A Converse Theorem without Root Numbers

Shantanu Agarwal

University of Iowa

shantanu-agarwal@uiowa.edu

March 18, 2022
What is a Converse Theorem?

“A converse theorem characterizes automorphic forms in terms of analytic properties of their L-functions.”
A classical result

Let $f : H \to \mathbb{C}$ have a Fourier expansion

$$f(z) = \sum_{n=1}^{\infty} a_n e^{2\pi i n z}$$

Can associate to f the completed L-function

$$\Lambda(s; f) = (2\pi)^{-s} \Gamma(s) \sum_{n=1}^{\infty} a_n n^{-s}$$
A classical result

Let \(f : \mathcal{H} \to \mathbb{C} \) have a Fourier expansion \(f(z) = \sum_{n=1}^{\infty} a_ne^{2\pi i nz} \)
A classical result

- Let \(f : \mathcal{H} \to \mathbb{C} \) have a Fourier expansion \(f(z) = \sum_{n=1}^{\infty} a_n e^{2\pi i nz} \)
- Can associate to \(f \) the completed \(L \)-function

\[\Lambda(s; f) = (2\pi)^{-s} \Gamma(s) \sum_{n=1}^{\infty} a_n n^{-s} \]
Theorem (Hecke ’36)

\(f \) is a modular form for \(SL_2(\mathbb{Z}) \) of weight \(k \) if and only if \(\Lambda(s; f) \)

(i) has an analytic continuation to the whole \(s \)-plane

(ii) is bounded in vertical strips

(iii) satisfies the functional equation

\[
\Lambda(s; f) = (-1)^{k/2}\Lambda(k - s; f)
\]
A classical result

Theorem (Hecke ’36)

\(f \) is a modular form for \(\text{SL}_2(\mathbb{Z}) \) of weight \(k \) if and only if \(\Lambda(s; f) \)

(i) has an analytic continuation to the whole \(s \)-plane

(ii) is bounded in vertical strips

(iii) satisfies the functional equation

\[
\Lambda(s; f) = (-1)^{k/2} \Lambda(k - s; f)
\]

The if part of this statement is a prototypical example of a Converse theorem.
What about congruence subgroups \(\Gamma(N) \subset \text{SL}_2(\mathbb{Z}) \)?
What about congruence subgroups $\Gamma(N) \subset \text{SL}_2(\mathbb{Z})$?

A single functional equation does not suffice in this case.
What about congruence subgroups $\Gamma(N) \subset \text{SL}_2(\mathbb{Z})$?

A single functional equation does not suffice in this case.

Weil (1967) proved a converse theorem requiring a family of ‘twisted’ L-functions.
Weil’s setup

- Two sequences $\lambda = \{\lambda_n\}$ and $\tilde{\lambda} = \{\tilde{\lambda}_n\}$ of complex numbers.
Weil’s setup

- Two sequences $\lambda = \{\lambda_n\}$ and $\tilde{\lambda} = \{\tilde{\lambda}_n\}$ of complex numbers.
- Associate to them a pair of functions f, \tilde{f}

$$f(z) = \sum_{n=1}^{\infty} \lambda_n n^{\frac{k-1}{2}} e^{2\pi i nz} \quad \text{and} \quad \tilde{f}(z) = \sum_{n=1}^{\infty} \tilde{\lambda}_n n^{\frac{k-1}{2}} e^{2\pi i nz}. $$
Weil’s setup

- Two sequences \(\lambda = \{ \lambda_n \} \) and \(\tilde{\lambda} = \{ \tilde{\lambda}_n \} \) of complex numbers.
- Associate to them a pair of functions \(f, \tilde{f} \)

\[
f(z) = \sum_{n=1}^{\infty} \lambda_n n^{k-1/2} e^{2\pi inz} \quad \text{and} \quad \tilde{f}(z) = \sum_{n=1}^{\infty} \tilde{\lambda}_n n^{k-1/2} e^{2\pi inz}.
\]

- Define the \(L \)-function twisted by the Dirichlet character \(\chi \)

\[
\Lambda(s; \lambda, \chi) := \Gamma_{\mathbb{C}} \left(s + \frac{k-1}{2} \right) \sum_{n=1}^{\infty} \lambda_n \chi(n) n^{-s}.
\]
Weil’s Converse theorem

Weil showed that if the L-functions defined above are ‘nice’ for every Dirichlet character χ with conductor q relatively prime to N and satisfy the functional equation

$$\Lambda(s; \lambda, \chi) = C_\chi(q^2N)^{\frac{1}{2} - s} \Lambda(1 - s; \tilde{\lambda}, \bar{\chi}),$$

then f is a modular form of level N and weight k.

The complex number $C_\chi = i^k \xi(q) \chi(-N)/\tau(\bar{\chi})$, with $\tau(\chi)$ the Gauss sum for χ and ξ the nebentypus character of f, is called the root number of the functional equation.
Weil’s Converse theorem

Weil showed that if the L-functions defined above are ‘nice’ for every Dirichlet character χ with conductor q relatively prime to N and satisfy the functional equation

$$\Lambda(s; \lambda, \chi) = C_\chi (q^2 N)^{\frac{1}{2} - s} \Lambda(1 - s; \tilde{\lambda}, \tilde{\chi}),$$

then f is a modular form of level N and weight k. The complex number $C_\chi = i^k \xi(q)\chi(-N)\tau(\chi)/\tau(\tilde{\chi})$, with $\tau(\chi)$ the Gauss sum for χ and ξ the nebentypus character of f, is called the root number of the functional equation.
Jacquet and Langlands gave a Converse theorem in the language of automorphic representations.
Jacquet and Langlands gave a Converse theorem in the language of automorphic representations. Let

- k be a global field and \mathbb{A} its adele ring, and
Jacquet and Langlands gave a Converse theorem in the language of automorphic representations. Let

- k be a global field and \mathbb{A} its adele ring, and
- $\pi = \otimes \pi_v$ an irreducible admissible generic representation of $\text{GL}_2(\mathbb{A})$.
Jacquet and Langlands gave a Converse theorem in the language of automorphic representations. Let

- k be a global field and \mathbb{A} its adele ring, and
- $\pi = \bigotimes \pi_v$ an irreducible admissible generic representation of $GL_2(\mathbb{A})$.

Assume

- the central character χ of π is an idele class character, and
Jacquet and Langlands gave a Converse theorem in the language of automorphic representations. Let

- k be a global field and \mathbb{A} its adele ring, and
- $\pi = \otimes \pi_v$ an irreducible admissible generic representation of $GL_2(\mathbb{A})$.

Assume

- the central character χ of π is an idele class character, and
- the L-function $L(s; \pi) = \prod_v L(s; \pi_v)$ converges in some right half plane.
Theorem (Jacquet and Langlands ’70)

Suppose, for each idele class character ω, the twisted L-functions $L(s; \pi \otimes \omega)$ and $L(s; \bar{\pi} \otimes \omega^{-1})$ can be continued to entire functions of s, are bounded in vertical strips and satisfy the functional equation

$$L(s; \pi \otimes \omega) = \varepsilon(s; \pi \otimes \omega)L(1 - s; \bar{\pi} \otimes \omega^{-1}).$$

Then π is a cuspidal automorphic representation.
For each $\xi = \bigotimes_v \xi_v \in V_\pi$ let $W_\xi = \prod_v W_{\xi_v} \in \mathcal{W}(\pi, \psi)$ and set

$$\varphi_\xi(g) = \sum_{\gamma \in k^\times} W_\xi \left(\begin{pmatrix} \gamma & 0 \\ 0 & 1 \end{pmatrix} g \right).$$

This gives another embedding of π in a space of functions on $G(\mathbb{A})$.
For each $\xi = \otimes_v \xi_v \in V_\pi$ let $W_\xi = \prod_v W_{\xi_v} \in \mathcal{W}(\pi, \psi)$ and set

$$\varphi_\xi(g) = \sum_{\gamma \in k^\times} W_\xi \left(\begin{pmatrix} \gamma & 0 \\ 0 & 1 \end{pmatrix} g \right).$$

This gives another embedding of π in a space of functions on $G(\mathbb{A})$.

Show, for all g

$$\varphi_\xi(wg) = \varphi_\xi(g),$$

where $w = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. This shows φ_ξ, and hence π, is automorphic.
Can we relax the requirement of precise ε-factor?

Theorem (Booker '19)

Let π be an irreducible admissible representation of $GL_2(\mathbb{A}_\mathbb{Q})$ with automorphic central character and conductor N. Suppose each π_v is unitary and that π_∞ is a discrete series or limit of discrete series representation. For each unitary idele class character ω of conductor q coprime to N, suppose the completed L-functions $\Lambda(s, \pi \otimes \omega)$ and $\Lambda(s, \tilde{\pi} \otimes \omega^{-1})$ continue to entire functions on \mathbb{C}, are bounded in vertical strips and satisfy a functional equation of the form

$$\Lambda(s, \pi \otimes \omega) = \varepsilon_{\omega} \left(\frac{Nq^2}{2} \right)^{1/2 - s} \Lambda(1 - s, \tilde{\pi} \otimes \omega^{-1})$$

for some complex number ε_{ω}. Then there is a cuspidal automorphic representation $\Pi = \otimes_v \Pi_v$ such that $\Pi_\infty \sim \pi_\infty$ and $\Pi_v \sim \pi_v$ at every finite v at which π_v is unramified.
Can we relax the requirement of precise ε-factor?

Theorem (Booker ’19)

Let π be an irreducible admissible representation of $\text{GL}_2(\mathbb{A}_\mathbb{Q})$ with automorphic central character and conductor N. Suppose each π_v is unitary and that π_∞ is a discrete series or limit of discrete series representation. For each unitary idele class character ω of conductor q coprime to N, suppose the completed L-functions $\Lambda(s, \pi \otimes \omega)$ and $\Lambda(s, \tilde{\pi} \otimes \omega^{-1})$ continue to entire functions on \mathbb{C}, are bounded in vertical strips and satisfy a functional equation of the form

$$\Lambda(s, \pi \otimes \omega) = \varepsilon_\omega (Nq^2)^{\frac{1}{2} - s} \Lambda(1 - s, \tilde{\pi} \otimes \omega^{-1})$$

for some complex number ε_ω. Then there is a cuspidal automorphic representation $\Pi = \otimes_v \Pi_v$ such that $\Pi_\infty \cong \pi_\infty$ and $\Pi_v \cong \pi_v$ at every finite v at which π_v is unramified.
What about an arbitrary global field?
What about an arbitrary global field?

- Does the theorem hold for any global field?
What about an arbitrary global field?

- Does the theorem hold for any global field?
- I prove a version for a rational function field
What about an arbitrary global field?

- Does the theorem hold for any global field?
- I prove a version for a rational function field
- The values for ϵ_ω require some additional (natural) constraints
The case of a rational function field

- $F = \mathbb{F}_q(t)$
- \mathbb{A} the adele ring of F
- Fix a place ∞ of F
- π an irreducible admissible generic representation of $GL_2(\mathbb{A})$ with conductor α, and automorphic central character χ
The case of a rational function field

Theorem (A)

For each unitary idele class character ω whose conductor \mathfrak{f} is disjoint from α, assume the L-function $L(s, \pi \otimes \omega)$ continues to a holomorphic function on \mathbb{C} and satisfies the functional equation

$$L(s, \pi \otimes \omega) = \epsilon_\omega |af^2|^{s-\frac{1}{2}} L(1 - s, \tilde{\pi} \otimes \omega^{-1}),$$

where the complex number ϵ_ω is such that

(i) if ω is unramified or ramified only at ∞, then $\epsilon_\omega = 1$, and

(ii) for any unramified unitary idele class character ω', we have $\epsilon_{\omega'} \omega = \epsilon_\omega$.

Then there is a cuspidal automorphic representation Π so that $\Pi_v \cong \pi_v$ at all places v away from the support of the divisor α.
Key ingredients in the proof

- Basic idea of showing \(\varphi_\xi(wg) = \varphi_\xi(g) \) remains the same
Key ingredients in the proof

- Basic idea of showing $\varphi_\xi(wg) = \varphi_\xi(g)$ remains the same
- Define a notion of twist of φ by a character mod a divisor
Key ingredients in the proof

- Basic idea of showing $\varphi_\xi(wg) = \varphi_\xi(g)$ remains the same
- Define a notion of twist of φ by a character mod a divisor
- Derive a functional equation for the Dirichlet series associated to these twisted variants of φ
Key ingredients in the proof

- Basic idea of showing $\varphi_\xi(wg) = \varphi_\xi(g)$ remains the same
- Define a notion of twist of φ by a character \textit{mod a divisor}
- Derive a functional equation for the Dirichlet series associated to these twisted variants of φ
- Average the subsequent equality we get for the twisted φ and its dual over all unitary characters \textit{mod a fixed divisor}
Key ingredients in the proof

- Basic idea of showing $\phi_\xi(wg) = \phi_\xi(g)$ remains the same
- Define a notion of twist of ϕ by a character mod a divisor
- Derive a functional equation for the Dirichlet series associated to these twisted variants of ϕ
- Average the subsequent equality we get for the twisted ϕ and its dual over all unitary characters $\text{mod a fixed divisor}$
- Primes in arithmetic progression in a rational function field
Twists mod a conductor

Let \(\xi^0 = \bigotimes_v \xi^0_v \in V_\pi \), where \(\xi^0_v \) is the new vector in \(V_{\pi_v} \). Like before, set

\[
\varphi_{\xi^0}(g) = \sum_{\gamma \in k^\times} W_{\xi^0} \left(\begin{pmatrix} \gamma & 0 \\ 0 & 1 \end{pmatrix} g \right).
\]

For \(\omega \) an idele class character, define

\[
I(s; \varphi_{\xi^0}, \omega) = \int_{\mathbb{A}^\times} W_{\xi^0} \left(\begin{pmatrix} u & 0 \\ 0 & 1 \end{pmatrix} \right) \omega(u) |u|^{s-\frac{1}{2}} \, du.
\]
Twists mod a conductor

- Let $\xi^0 = \bigotimes_v \xi_v^0 \in V_\pi$, where ξ_v^0 is the new vector in V_{π_v}. Like before, set

$$\varphi_{\xi^0}(g) = \sum_{\gamma \in k^\times} W_{\xi^0} \left(\begin{pmatrix} \gamma & 0 \\ 0 & 1 \end{pmatrix} g \right).$$

- For ω an idele class character, define

$$I(s; \varphi_{\xi^0}, \omega) = \int_{\mathbb{A}^\times} W_{\xi^0} \left(\begin{pmatrix} u & 0 \\ 0 & 1 \end{pmatrix} \right) \omega(u) |u|^{s - \frac{1}{2}} \, du.$$

- If ω is ramified at any place π is unramified, this integral becomes zero.
To still be able to work with an explicit function in the integral representation and get something non-zero, we define a variant of \(\varphi = \varphi \xi_0 \).
Twists mod a conductor

To still be able to work with an explicit function in the integral representation and get something non-zero, we define a variant of $\varphi = \varphi_{\xi_0}$. Let f_0 be a divisor and τ an idele class character with conductor dividing f_0. Denote by $\varphi(x, y)$ the value $\varphi \left(\begin{pmatrix} x & y \\ 0 & 1 \end{pmatrix} \right)$. Denote by $\varphi(x, y)$ the value $\varphi \left(\begin{pmatrix} x & y \\ 0 & 1 \end{pmatrix} \right)$.
Twists mod a conductor

To still be able to work with an explicit function in the integral representation and get something non-zero, we define a variant of \(\varphi = \varphi_{\xi^0} \). Let \(f_0 \) be a divisor and \(\tau \) an idele class character with conductor dividing \(f_0 \). Denote by \(\varphi(x, y) \) the value \(\varphi \left(\begin{pmatrix} x & y \\ 0 & 1 \end{pmatrix} \right) \). On such matrices, we define the twist of \(\varphi \) by \(\tau \mod f_0 \) as

\[
\varphi_{\tau,f_0}(x, y) = \int_{\prod_v \mathcal{O}^\times_v} \tau(u) \varphi \left(\begin{pmatrix} x & y \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & wu \\ 0 & 1 \end{pmatrix} \right) du,
\]

where \(w \) is an adele given in terms of \(f_0 \).
Twists mod a conductor

Working with the integral $I(s; \varphi_{\omega, f_0}, \omega)$ instead, we can pick out local L-factors of $L(s, \pi \otimes \omega)$ even at places where ω is ramified. By varying f_0, we get finer control on what terms in the Dirichlet series corresponding to $L(s, \pi \otimes \omega)$ we pick up.
We can explore the role of root numbers in functional equations in the context converse theorems. The Langlands-Shahidi method gives a well developed theory of ε-factors, so I don’t see any direct application. However, if we had a method of constructing L-functions that did not give precise ε-factors, converse theorems not requiring root numbers could be useful.
Andrew Booker (2019)
A converse theorem without root numbers

Hervé Jacquet and Robert Langlands (1970)
Automorphic Forms on GL (2)
Springer Lecture notes in Mathematics **114**.

André Weil (1971)
Dirichlet Series and Automorphic Forms
Springer Lecture notes in Mathematics **189**.
Thank You!