Diameters of compact arithmetic hyperbolic surfaces

Raphael S. Steiner
ETH Zürich

17.03.2022
For the purpose of this talk, a hyperbolic surface will be \(\Gamma \backslash \mathbb{H} \) for a discrete subgroup \(\Gamma \subset SL_2(\mathbb{R}) \), where the action is given by Möbius transformations \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} z = \frac{az+b}{cz+d} \).
Compact arithmetic hyperbolic surfaces

For the purpose of this talk, a hyperbolic surface will be $\Gamma \backslash \mathbb{H}$ for a discrete subgroup $\Gamma \subset \text{SL}_2(\mathbb{R})$, where the action is given by Möbius transformations \[
\begin{pmatrix}
a & b \\ c & d
\end{pmatrix} z = \frac{az+b}{cz+d}.
\]

Basic examples for Γ include:

- $\{\pm I\}$,
- $\text{SL}_2(\mathbb{Z})$,
- $\Gamma_0(N) = \{ (a \ b) \in \text{SL}_2(\mathbb{Z}) | c \equiv 0 \text{ mod}(N) \}$,
- $\Gamma(N) = \{ \gamma \in \text{SL}_2(\mathbb{Z}) | \gamma \equiv I \text{ mod}(N) \}$.
For the purpose of this talk, a hyperbolic surface will be $\Gamma \backslash \mathbb{H}$ for a discrete subgroup $\Gamma \subset \text{SL}_2(\mathbb{R})$, where the action is given by Möbius transformations $\left(\begin{array}{cc} a & b \\ c & d \end{array} \right) z = \frac{az+b}{cz+d}$.

Basic examples for Γ include:

- $\{\pm I\}$,
- $\text{SL}_2(\mathbb{Z})$,
- $\Gamma_0(N) = \{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \text{SL}_2(\mathbb{Z}) | c \equiv 0 \text{ mod}(N) \}$,
- $\Gamma(N) = \{ \gamma \in \text{SL}_2(\mathbb{Z}) | \gamma \equiv I \text{ mod}(N) \}$.

Except for the first, these are all examples of arithmetic lattices in $\text{SL}_2(\mathbb{R})$. However, they are not co-compact.
We start with a quaternion algebra $B = \left(\frac{a,b}{\mathbb{Q}} \right)$, $a, b \in \mathbb{Q}^\times$, which we assume to be split (indefinite) over the reals, i.e. $B \otimes \mathbb{R} \cong \text{Mat}_{2 \times 2}(\mathbb{R}) \Leftrightarrow a > 0$ or $b > 0$.

Recall $\left(\frac{a,b}{\mathbb{Q}} \right)$ is the \mathbb{Q}-algebra generated by $1, i, j, k$ with the relations

$$i^2 = a, \quad j^2 = b, \quad k = ij = -ji.$$
We start with a quaternion algebra $B = (\frac{a,b}{\mathbb{Q}})$, $a, b \in \mathbb{Q}^\times$, which we assume to be split (indefinite) over the reals, i.e. $B \otimes \mathbb{R} \cong \text{Mat}_{2 \times 2}(\mathbb{R})$ ($\iff a > 0$ or $b > 0$).

Recall $(\frac{a,b}{\mathbb{Q}})$ is the \mathbb{Q}-algebra generated by $1, i, j, k$ with the relations

$$i^2 = a, \quad j^2 = b, \quad k = ij = -ji.$$

Next, we introduce an integral structure $R \subset B$, an order, that is a lattice which is also closed under multiplication. For us, R will either be maximal or an intersection of two maximal orders, a so-called Eichler order.
Compact arithmetic hyperbolic surfaces

We start with a quaternion algebra $B = (\mathbb{Q}, a, b)$, $a, b \in \mathbb{Q}^\times$, which we assume to be split (indefinite) over the reals, i.e. $B \otimes \mathbb{R} \cong \text{Mat}_{2 \times 2}(\mathbb{R})$ ($\iff a > 0$ or $b > 0$).

Recall (\mathbb{Q}, a, b) is the \mathbb{Q}-algebra generated by $1, i, j, k$ with the relations

$$i^2 = a, \quad j^2 = b, \quad k = ij = -ji.$$

Next, we introduce an integral structure $R \subset B$, an order, that is a lattice which is also closed under multiplication. For us, R will either be maximal or an intersection of two maximal orders, a so-called Eichler order.

$$R \subset B \otimes \mathbb{R} \cong \text{Mat}_{2 \times 2}(\mathbb{R})$$
We start with a quaternion algebra $B = \left(\frac{a, b}{\mathbb{Q}} \right)$, $a, b \in \mathbb{Q}^\times$, which we assume to be split (indefinite) over the reals, i.e. $B \otimes \mathbb{R} \cong \text{Mat}_{2\times 2}(\mathbb{R})$ ($\iff a > 0$ or $b > 0$).

Recall $\left(\frac{a, b}{\mathbb{Q}} \right)$ is the \mathbb{Q}-algebra generated by $1, i, j, k$ with the relations

$$i^2 = a, \quad j^2 = b, \quad k = ij = -ji.$$

Next, we introduce an integral structure $R \subset B$, an order, that is a lattice which is also closed under multiplication. For us, R will either be maximal or an intersection of two maximal orders, a so-called Eichler order.

$$R \subset B \otimes \mathbb{R} \cong \text{Mat}_{2\times 2}(\mathbb{R})$$

$$\Gamma := R^1 \subset (B \otimes \mathbb{R})^1 \cong \text{SL}_2(\mathbb{R})$$
B an indefinite quaternion algebra over \mathbb{Q}, $R \subset B$ an Eichler order, $\Gamma = R^1$ the set of proper units.
Compact arithmetic hyperbolic surfaces

B an indefinite quaternion algebra over \mathbb{Q}, $R \subset B$ an Eichler order, $\Gamma = R^1$ the set of proper units.

- $B = (\frac{1,1}{\mathbb{Q}}) \simeq \text{Mat}_{2 \times 2}(\mathbb{Q})$, $R = \text{Mat}_{2 \times 2}(\mathbb{Z})$ (maximal), $\Gamma = \text{SL}_2(\mathbb{Z})$,
- $B = (\frac{7,5}{\mathbb{Q}})$, $R = \langle 1, \frac{1+j}{2}, i, \frac{1+i+j+k}{2} \rangle_\mathbb{Z}$ (maximal), $\Gamma = R^1$,
- $B = (\frac{77,-1}{\mathbb{Q}})$, $R = \langle 1, \frac{1+i}{2}, j, \frac{j+k}{2} \rangle_\mathbb{Z}$ (maximal), $\Gamma = R^1$.

R. S. Steiner

Diameters of compact arithmetic hyperbolic surfaces
Compact arithmetic hyperbolic surfaces

B an indefinite quaternion algebra over \mathbb{Q}, $R \subset B$ an Eichler order, $\Gamma = R^1$ the set of proper units.

- $B = (\frac{1}{1}, \frac{1}{1}) \cong \text{Mat}_{2 \times 2}(\mathbb{Q})$, $R = \text{Mat}_{2 \times 2}(\mathbb{Z})$ (maximal), $\Gamma = \text{SL}_2(\mathbb{Z})$,
- $B = (\frac{7}{5}, \frac{5}{7})$, $R = \langle 1, \frac{1+j}{2}, i, \frac{1+i+j+k}{2} \rangle_{\mathbb{Z}}$ (maximal), $\Gamma = R^1$,
- $B = (\frac{77}{-1}, \frac{-1}{77})$, $R = \langle 1, \frac{1+i}{2}, j, \frac{j+k}{2} \rangle_{\mathbb{Z}}$ (maximal), $\Gamma = R^1$.

The discriminant \mathfrak{D} of B is the product of the (finite) primes p for which $B \otimes \mathbb{Q}_p \ncong \text{Mat}_{2 \times 2}(\mathbb{Q}_p)$.

R. S. Steiner
Diameters of compact arithmetic hyperbolic surfaces
B an indefinite quaternion algebra over \mathbb{Q}, $R \subset B$ an Eichler order, \(\Gamma = R^1 \) the set of proper units.

- $B = \left(\frac{1,1}{\mathbb{Q}}\right) \cong \text{Mat}_{2 \times 2}(\mathbb{Q})$, $R = \text{Mat}_{2 \times 2}(\mathbb{Z})$ (maximal), \(\Gamma = \text{SL}_2(\mathbb{Z}) \),
- $B = \left(\frac{7,5}{\mathbb{Q}}\right)$, $R = \langle 1, \frac{1+j}{2}, i, \frac{1+i+j+k}{2} \rangle_{\mathbb{Z}}$ (maximal), \(\Gamma = R^1 \),
- $B = \left(\frac{77,-1}{\mathbb{Q}}\right)$, $R = \langle 1, \frac{1+i}{2}, j, \frac{j+k}{2} \rangle_{\mathbb{Z}}$ (maximal), \(\Gamma = R^1 \).

The discriminant \mathcal{D} of B is the product of the (finite) primes p for which $B \otimes \mathbb{Q}_p \not\cong \text{Mat}_{2 \times 2}(\mathbb{Q}_p)$. The level \mathfrak{N} of an Eichler order R is a measurement of the distance between the two maximal orders R_1, R_2 such that $R = R_1 \cap R_2$.
Compact arithmetic hyperbolic surfaces

B an indefinite quaternion algebra over \mathbb{Q}, $R \subset B$ an Eichler order, \(\Gamma = R^1 \) the set of proper units.

- \(B = (\frac{1,1}{\mathbb{Q}}) \cong \text{Mat}_{2 \times 2}(\mathbb{Q}), \) $R = \text{Mat}_{2 \times 2}(\mathbb{Z})$ (maximal), $\Gamma = \text{SL}_2(\mathbb{Z}), \mathcal{D} = \mathcal{N} = 1$,

- \(B = (\frac{7,5}{\mathbb{Q}}), \) $R = \langle 1, \frac{1+j}{2}, i, \frac{1+i+j+k}{2} \rangle_{\mathbb{Z}}$ (maximal), $\Gamma = R^1, \mathcal{D} = 35, \mathcal{N} = 1$,

- \(B = (\frac{77,-1}{\mathbb{Q}}), \) $R = \langle 1, \frac{1+i}{2}, j, \frac{j+k}{2} \rangle_{\mathbb{Z}}$ (maximal), $\Gamma = R^1, \mathcal{D} = 77, \mathcal{N} = 1$.

The discriminant \mathcal{D} of B is the product of the (finite) primes p for which $B \otimes \mathbb{Q}_p \not\cong \text{Mat}_{2 \times 2}(\mathbb{Q}_p)$. The level \mathcal{N} of an Eichler order R is a measurement of the distance between the two maximal orders R_1, R_2 such that $R = R_1 \cap R_2$.
Compact arithmetic hyperbolic surfaces

B an indefinite quaternion algebra over \mathbb{Q}, $R \subset B$ an Eichler order, $\Gamma = R^1$ the set of proper units.

- $B = (\frac{1,1}{\mathbb{Q}}) \cong \text{Mat}_{2 \times 2}(\mathbb{Q})$, $R = \text{Mat}_{2 \times 2}(\mathbb{Z})$ (maximal), $\Gamma = \text{SL}_2(\mathbb{Z})$, $\mathfrak{D} = \mathfrak{N} = 1$,
- $B = (\frac{7,5}{\mathbb{Q}})$, $R = \langle 1, \frac{1+j}{2}, i, \frac{1+i+j+k}{2} \rangle_{\mathbb{Z}}$ (maximal), $\Gamma = R^1$, $\mathfrak{D} = 35$, $\mathfrak{N} = 1$,
- $B = (\frac{77,-1}{\mathbb{Q}})$, $R = \langle 1, \frac{1+i}{2}, j, \frac{j+k}{2} \rangle_{\mathbb{Z}}$ (maximal), $\Gamma = R^1$, $\mathfrak{D} = 77$, $\mathfrak{N} = 1$.

The discriminant \mathfrak{D} of B is the product of the (finite) primes p for which $B \otimes \mathbb{Q}_p \not\cong \text{Mat}_{2 \times 2}(\mathbb{Q}_p)$. The level \mathfrak{N} of an Eichler order R is a measurement of the distance between the two maximal orders R_1, R_2 such that $R = R_1 \cap R_2$.

The volume of $\Gamma \backslash \mathbb{H}$ is $V = (\mathfrak{D}\mathfrak{N})^{1+o(1)}$ and Γ is co-compact iff $\mathfrak{D} > 1$.

R. S. Steiner
Diameters of compact arithmetic hyperbolic surfaces
Ford fundamental domains of the previous co-compact arithmetic lattices after a Cayley transformation $\mathbb{H} \to \mathcal{D}$.

Figure 13: $F = \mathbb{Q}$, $D = 35$, $\mu(U) = 25.1327412287$.

Figure 31: $F = \mathbb{Q}$, $D = 77$, $\mu(U) = 62.8318530718$.

These images are a courtesy of James Rickards.
Why consider diameters?

- Bounding the size of generators of Γ,

- Bounding the size of generators of Γ,
Why consider diameters?

- Bounding the size of generators of Γ,
- Giving a runtime complexity for computing these domains, generators, reduced word problem w.r.t. these generators, computing intersection numbers of geodesics,... (work by Voight, Rickards, etc.),

Indefinite analogue of the LPS-graphs, a type of Ramanujan graphs which admit small diameter due to the large spectral gap. (work by Lubotzky, Phillips, Sarnak, Golubev, Kamber, etc.)
Why consider diameters?

- Bounding the size of generators of Γ,
- Giving a runtime complexity for computing these domains, generators, reduced word problem w.r.t. these generators, computing intersection numbers of geodesics,... (work by Voight, Rickards, etc.),
- Indefinite analogue of the LPS-graphs, a type of Ramanujan graphs which admit small diameter due to the large spectral gap. (work by Lubotzky, Phillips, Sarnak, Golubev, Kamber, etc.)
Prior and new results

- Chu–Li: $\Gamma \backslash \mathbb{H}$ of volume V as before has diameter bounded by $(2.56 + o(1)) \log(V)$,
Prior and new results

- Chu–Li: $\Gamma \backslash \mathbb{H}$ of volume V as before has diameter bounded by $(2.56 + o(1)) \log(V)$,
- Golubev–Kamber: $\Gamma \backslash \mathbb{H}$ of volume V with $\lambda_1 \geq \frac{1}{4}$ has almost diameter bounded by $(1 + o(1)) \log(V)$,
Prior and new results

- Chu–Li: $\Gamma \backslash \mathbb{H}$ of volume V as before has diameter bounded by $(2.56 + o(1)) \log(V)$,

- Golubev–Kamber: $\Gamma \backslash \mathbb{H}$ of volume V with $\lambda_1 \geq \frac{1}{4}$ has almost diameter bounded by $(1 + o(1)) \log(V)$,

- Golubev–Kamber: certain normal arithmetic covers $\Gamma_2 \backslash \mathbb{H}$ over $\Gamma_1 \backslash \mathbb{H}$ have almost diameter bounded by $(1 + o(1)) \log([\Gamma_1 : \Gamma_2])$.
Prior and new results

- Chu–Li: $\Gamma \backslash \mathbb{H}$ of volume V as before has diameter bounded by $(2.56 + o(1)) \log(V)$,

- Golubev–Kamber: $\Gamma \backslash \mathbb{H}$ of volume V with $\lambda_1 \geq \frac{1}{4}$ has almost diameter bounded by $(1 + o(1)) \log(V)$,

- Golubev–Kamber: certain normal arithmetic covers $\Gamma_2 \backslash \mathbb{H}$ over $\Gamma_1 \backslash \mathbb{H}$ have almost diameter bounded by $(1 + o(1)) \log([\Gamma_1 : \Gamma_2])$.

Theorem (S.)

Let Γ be an arithmetic co-compact lattice stemming from an Eichler order of square-free level in an indefinite quaternion algebra over \mathbb{Q}. Then, for every point w on the hyperbolic surface $\Gamma \backslash \mathbb{H}$ of volume V, almost every point $z \in \Gamma \backslash \mathbb{H}$ satisfies

$$\min_{\gamma \in \Gamma} d(\gamma z, w) \leq (1 + o(1)) \log(V).$$
The proof builds on the approach by Golubev–Kamber. Let B_z be a smooth ball centred at z of small enough radius such that it behaves like a euclidean ball.
The proof builds on the approach by Golubev–Kamber. Let B_z be a smooth ball centred at z of small enough radius such that it behaves like a euclidean ball.

Let A_T be some operator that dissipates the mass at unit speed evaluated at time T. (Think geodesic flow projected down to the surface.)
The proof builds on the approach by Golubev–Kamber. Let B_z be a smooth ball centred at z of small enough radius such that it behaves like a euclidean ball.

Let A_T be some operator that dissipates the mass at unit speed evaluated at time T. (Think geodesic flow projected down to the surface.)

Then, it satisfies to show for $T_0 = (1 + \epsilon) \log(V)$, that

\[
\nu_{prob}(w \in \Gamma \setminus \mathbb{H} \mid A_{T_0} B_z(w) = 0) \ll V^2 \|A_{T_0} B_z - \langle B_z, 1 \rangle 1\|_2^2 = o(1).
\]
Proof sketch

\[V^2 \| A_{T_0} B_z - \langle B_z, 1 \rangle 1 \|_2^2 \]
\[\ll T_0^2 \sum_{0 < \lambda_j \leq \frac{1}{4}} (e^{-\frac{T_0}{2}})^{2(1 - \sqrt{1 - 4\lambda_j})} |u_j(z)|^2 + T_0^2 e^{-T_0} V^2 \| B_z \|_2^2. \]
Proof sketch

\[V^2 \| A_{T_0} B_z - \langle B_z, 1 \rangle 1 \|_2^2 \]
\[\ll T_0^2 \sum_{0 < \lambda_j \leq \frac{1}{4}} (e^{-\frac{T_0}{2}})^{2(1 - \sqrt{1 - 4\lambda_j})} |u_j(z)|^2 + T_0^2 e^{-T_0} V^2 \| B_z \|_2^2. \]

Use \(\| B_z \|_2^2 \ll V^{-1} \), Cauchy–Schwarz to split off the exceptional Maaß forms \(u_j \), a strong density estimate for one of the factors, and a sharp estimate on the fourth moment of exceptional Maaß form by Khayutin–Nelson–S. (soon to appear) for the other factor.
Thank you for listening!