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Abstract. We investigate the modular completions of the mock theta functions.

1. Completions of the mock theta functions: from E2 to Zwegers

1.1. The Mock Theta functions. In his last letter to Hardy, Ramanujan introduced
a new family of functions which he dubbed “mock theta functions”. He stated that
the mock theta functions were not themselves theta functions, but that they behave
like theta functions Historical note: in Ramanujan’s time, “theta functions” was
the terminology for “modular forms”.

Recall the definition of modular forms: A function f is a modular form of weight k
on Γ ⊆ SL2(Z) with multiplier system χ (having absolute value 1) if

(1) For allM = ( a bc d ) ∈ Γ, defining f |kM(τ) = f |k,χM(τ) := χ(M)(cτ+d)−kf(Mτ)
with τ ∈ H (we omit χ when it is clear from the context)

f |k,χM = f(τ).

(2) The function f is holomorphic on H.
(3) The function is holomorphic at the cusps: for every cusp ρ = α

γ
, the function

fρ := f |kM−1
ρ , with Mρ = ( α ∗γ ∗ ), satisfies (here q := e2πiτ and `ρ is the cusp

form)

fρ(τ) =
∑
n≥0

af,ρ(n)q
n
`ρ .

Ramanujan included 17 examples of his new mock theta functions, and listed some
vague properties of the functions, but did not fully explain why they were like modular
forms, nor did he prove that they were indeed not modular forms.

One of the main properties that he listed is the following: At each root of unity
ζ = e2πiρ (with ρ ∈ Q), and q = e−tζ with t → 0+ (i.e., approaching radially), there
exist M,N such that the function has the asymptotic

M∑
µ=1

tkµ exp

(
N∑
ν=1

cµνt
ν

)
+O(1). (1.1)
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In addition, he required that at each cusp, there is a modular form which cancels the
growth at that cusp, and that there is not a single modular form which cancels the
growth at all cusps simultaneously.

An example of a mock theta function given by Ramanujan (he calls it a mock theta
function of order 3) is

f(q) :=
∞∑
n=0

qn
2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
.

G.N. Watson (1935) later proved that f(q) indeed satisfies the asymptotic formula
(1.1). In particular, he showed that

f(q) =
1∏∞

`=1(1− q`)
∑
n∈Z

(−1)nq
3
2
n2+ 1

2
n

1 + qn
. (1.2)

The denominator
∏∞

`=1(1− q`) is essentially the η-function

η(τ) := q
1
24

∞∏
`=1

(
1− q`

)
.

Another mock theta function (of order 5) is given by

f0(q) :=
∞∑
n=0

qn
2

(1 + q)(1 + q2) · · · (1 + qn)
.

Watson did not obtain a formula similar to (1.2) for f0, but Andrews (1986) proved

f0(q) =
1∏∞

`=1(1− q`)
∑
n≥0

∑
|j|≤n

(−1)jq
5
2
n2+ 1

2
n−j2 (1− q4n+2

)
.

Question: How does this fit into the theory of modular forms?
“Rough” answer (Zwegers): It is part of a “modular object”.
What do we mean by that?

1.2. Completions: a simple example. Let’s start with a simple example:
Consider the Eisenstein series

Ek(τ) :=
∑

(c,d)=1

(cτ + d)−k.

Converges absolutely and locally uniformly for k > 2. Note that (here Γ∞ := {±T n :
n ∈ Z} with T := ( 1 1

0 1 ))

Ek =
∑

M∈Γ∞\SL2(Z)

1|kM.

For 2 < k ∈ 2N, when slashing with γ ∈ SL2(Z), we may use |kM |kγ = |k(Mγ) ot
obtain that Ek is a modular form of weight k. What about k = 2?

As is well-known, if one writes the Eisenstein series

Ek(τ) =
∑
c

∑∗

d (mod c)

∑
n∈Z

(cτ + d+ nc)−k,
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then one obtains the Fourier expansion (Bk is kth Bernoulli number and σ`(n) :=∑
d|n d

` is the sum of divisors)

Ek(τ) = 1 +
2k

Bk

∞∑
n=1

σk−1(n)qn.

Similarly, by choosing the same ordering on the conditionally convergent series defining
E2, we obtain (σ = σ1)

E2(τ) = 1− 24
∞∑
n=1

σ(n)qn.

Although E2 is holomorphic, it is not modular of weight 2 (this is a consequence of
the fact that the sum is only conditionally convergent, and hence reordering is not
possible). However, it does satisfy a transformation property:

E2(Mτ) = (cτ + d)2E2(τ)− 6i

π
c(cτ + d) (1.3)

Idea: Find something else with the same transformation property as (1.3). Note that
(τ = u+ iv throughout)

1

Im(Mτ)
=
|cτ + d|2

v
=

(cτ + d)(cτ + d)

v

=
(cτ + d)(c(τ − 2iv) + d)

v
=

(cτ + d)2

v
− 2ic(cτ + d).

Hence

E∗2(τ) := E2(τ)− 3

πv
is a non-holomorphic modular form and we conclude that E2 is “part” of a non-
holomorphic modular form, i.e., the holomorphic function E2 has been completed to a
non-holomorphic modular form. This is the type of behavior meant above by “part of
a modular object”.

1.3. Appell–Lerch sums and their completions. To understand how Ramanu-
jan’s mock theta functions are like E2, we first need to understand sums like (1.2). We
begin by defining Jacobi’s theta functions

ϑ(z; τ) :=
∑
ν∈ 1

2
+Z

eπiν
2τ+2πiν(z+ 1

2) =
∑

n∈ 1
2

+Z

(−1)nq
n2

2 ζn,

where ζ := e2πiz. A normalized Appell–Lerch sum is defined by

µ(u, v) = µ(u, v; τ) :=
eπiu

ϑ(v; τ)

∑
n∈Z

(−1)neπi(n
2+n)τ+2πinv

1− e2πinτ+2πiu
.

Note: The Jacobi triple product formula states that

ϑ(z; τ) = −iq
1
8 ζ−

1
2

∞∏
n=1

(1− qn)
(
1− ζqn−1

)(
1− ζ−1qn

)
.

The µ-function satisfies the following properties.
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Proposition 1.1 (Lerch/Zwegers).

(1)
µ(u+ 1, v) = −µ(u, v).

(2)
µ(u, v + 1) = −µ(u, v)

(3)

µ(u, v) + e−2πi(u−v)−πiτµ(u+ τ, v) = −e−πi(u−v)−πiτ/4.

(4)
µ(u+ τ, v + τ) = µ(u, v)

(5)
µ(−u,−v) = µ(u, v)

(6) The function u 7→ µ(u, v) is meromorphic with simple poles at u = nτ + m
(n,m ∈ Z), and particularly has residue − 1

2πiϑ(v;τ)
at u = 0.

(7)

µ(u+ z, v + z)− µ(u, v) =
1

2πi

∂ϑ
∂w

(w; τ)
∣∣
w=0

ϑ(u+ v + z; τ)ϑ(z; τ)

ϑ(u; τ)ϑ(v; τ)ϑ(u+ z; τ)ϑ(v + z; τ)
.

(8)
µ(v, u) = µ(u, v).

(9) The function µ has the transformation properties

µ(u, v; τ + 1) = e−
πi
4 µ(u, v; τ).

and

1√
iτ
eπi

(u−v)2
τ µ

(
u

τ
,
v

τ
;−1

τ

)
+ µ(u, v; τ) =

1

2i
h(u− v; τ),

where

h(z; τ) :=

∫
R

eπiτx
2−2πizx

cosh(πx)
dx.

The last two properties are somewhat reminiscent of the transformation properties
of E2. If we can find another function (similar to − 3

πy
in the case of E2) which misses

modularity in the same way as µ, then we can “complete” it to obtain a “modular
object”.

We next show how to complete the Lerch sums. Define

E(z) := 2

∫ z

0

e−πu
2

du =
∞∑
n=0

(−π)n

n!

z2n+1

n+ 1
2

= sgn(z)
(
1− β(z2)

)
,

with

β(x) :=

∫ ∞
x

u−
1
2 e−πudu.

For u ∈ C and τ ∈ H we then define (set a = Im(u)
Im(τ)

)

R(u) = R(u; τ) :=
∑

n∈ 1
2

+Z

(
sgn(v)− E

(
(n+ a)

√
2v
))

(−1)n−
1
2 e−πin

2τ−2πinu.
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Note that because of the appearance of a and v, the functionR(u; τ) is non-holomorphic,
both as a function of u and of τ , but it is real analytic. Indeed, its image under dif-
ferentiation with respect to u essentially gives one of Jacobi’s theta functions. In
particular,

∂R

∂u
(u; τ) =

√
2

v
e−2πa2vϑ(u;−τ)

and
∂R

∂τ
(aτ − b; τ) = − i√

2v
e−2πa2v

∑
n∈ 1

2
+Z

(−1)n−
1
2 (n+ a)e−πin

2τ−2πin(aτ−b).

The right-hand side is essentially a weight 3/2 unary theta function. Define

ξκ = ξκ,τ := 2ivκ
∂

∂τ
,

which maps functions satisfying weight κ modularity to functions satisfying weight
2 − κ modularity (consider simultaneous modularity in (τ, τ), then for f satisfying
weight (κ, 0) modularity, ∂

∂τ
(f) satisfies weight (κ, 2) modularity, conjugating gives

weight (2, κ), and then multiplying by the weight (−κ,−κ) form vκ yields a weight
(2 − κ, 0) form). Then (

.
= means up to non-zero constant) for α ∈ (−1/2, 1/2) and

β ∈ R we have
ξ1/2,τ (R(ατ − β; τ))

.
= gα+ 1

2
,β+ 1

2
(τ), (1.4)

where

ga,b(τ) :=
∑
n∈a+Z

nq
n2

2 ζbn

The function R satisfies certain transformation properties.

Proposition 1.2.
First, it satisfies certain elliptic transformation properties:

(1)
R(u+ 1) = −R(u).

(2)

R(u) + e−2πiu−πiτR(u+ τ) = 2e−πiu−
πiτ
4 .

(3)
R(−u) = −R(u).

It also satisfies modular transformation properties:

(1)

R(u; τ + 1) = e−
πi
4 R(u; τ).

(2)
1√
−iτ

eπi
u2

τ R

(
u

τ
;−1

τ

)
+R(u; τ) = h(u; τ).

Comparing Proposition 1.2 with Proposition 1.1, we see that the functions essentially
“miss modularity” in the same way. It is thus natural to define

µ̃(u, v; τ) := µ(u, v; τ) +
i

2
R(u− v; τ).
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Theorem 1.3. The function µ̃ is real analytic (but not holomorphic) and satisfies the
following modularity properties:

(1) The function µ̃ satisfies the elliptic transformation property

µ̃(u+ kτ + `, v +mτ + n) = (−1)k+`+m+neπi(k−m)2τ+2πi(k−m)(u−v)µ̃(u, v)

(2) Let χ be the η-multiplier (i.e., χ(M) := η(Mτ)

(cτ+d)
1
2 η(τ)

). Then for every M =

( a bc d ) ∈ SL2(Z), the function µ̃ satisfies the modular transformation property

µ̃

(
u

cτ + d
,

v

cτ + d
;
aτ + b

cτ + d

)
= χ(M)−3(cτ + d)

1
2 e−πi

c(u−v)2
cτ+d µ̃(u, v; τ).

(3)
µ̃(−u,−v) = µ̃(v, u) = µ̃(u, v).

(4) We have

µ̃(u+ z, v + z)− µ̃(u, v) =
1

2πi

∂ϑ
∂w

(w; τ)
∣∣
w=0

ϑ(u+ v + z; τ)ϑ(z; τ)

ϑ(u; τ)ϑ(v; τ)ϑ(u+ z; τ)ϑ(v + z; τ)
.

Remark. There are important properties of the functions µ, R, and µ̃ which closely
resemble the properties of E2, 1

y
, and E∗2 . Namely, the first is meromorphic, the second

is “simpler”, and the third satisfies modularity properties.

We see that µ is like E2 and µ̃ is like E∗2 . However, it also has elliptic transformation
properties like the Weierstrass elliptic functions (e.g., the Weierstrass ℘-function). Two
variable functions which satisfy both modularity and elliptic transformations are what
are known as Jacobi forms. More precisely, a Jacobi form of weight k and index m is
a holomorphic function φ : H× C→ C satisfying the transformation properties

φ

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)ke

2πimcz2

cτ+d φ(τ, z)

and
φ(τ, z + λτ + µ) = e−2πim(λ2τ+2λz)φ(τ, z).

Jacobi forms are so-named because the Jacobi theta functions ϑ(z; τ) are Jacobi forms
of weight 1/2 and index 1/2.

Theorem 1.3 shows that µ̃ has similar properties to those of a weight 1/2 Jacobi
form, except that it is a vector-valued analogue with index

( −1 1
1 −1

)
(or index 1 with

z = u− v).
One can then use formulas like (1.2) to realize f(q) as a certain µ-function. Hence

f(q) is the “holomorphic part” µ of a weight 1/2 non-holomorphic function µ̃. Namely,

q−
1
24

2
f(q) =

η3(3τ)

η(τ)ϑ
(

3
2
; 3τ
) + q−

1
6µ

(
3

2
,−τ ; 3τ

)
− q−

1
6µ

(
3

2
, τ ; 3τ

)
.

The non-holomorphic piece R that needed to be added to f(q) is related to a weight
3/2 unary theta function. The non-holomorphic part may be realized as what is known
as a non-holomorphic Eichler integral (also known as a period integral)

e−πia
2τ+2πi(b+ 1

2)R(aτ − b) =

∫ i∞

−τ

ga+ 1
2
,b+ 1

2
(z)√

−i(z + τ)
dz
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of the weight 3/2 unary theta function ga+1/2,b+1/2.
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2. Fourier coefficients of harmonic Maass forms and weakly
holomorphic modular forms with applications

2.1. Weakly holomorphic modular forms and harmonic Maass forms. In the
last lecture, we investigated how the mock theta functions are “part” of a “modular
object”. We now describe more precisely what we mean.

Recall the definition of modular forms: A function f is a modular form of weight k
on Γ ⊆ SL2(Z) with multiplier system χ (having absolute value 1) if

(1) For all M = ( a bc d ) ∈ Γ, defining f |kM(τ) := χ(M)(cτ +d)−kf(Mτ) with τ ∈ H
f |kM = f(τ).

(2) The function f is holomorphic on H.
(3) The function is holomorphic at the cusps: for every cusp ρ = α

γ
, the function

fρ := f |kM−1
ρ , with Mρ = ( α ∗γ ∗ ), satisfies (here q := e2πiτ and `ρ is the cusp

width)

fρ(τ) =
∑
n≥0

af,ρ(n)q
n
`ρ .

The main aspect of the definition is the modularity property, and it is natural to relax
the other conditions. For example, we may relax the third condition by allowing a
finite-order pole at the cusps (i.e., the Laurent expansion in q is supported in finitely
many negative powers of q). In other words, these are meromorphic modular forms
whose only poles occur at the cusps, and such functions are known as weakly holomor-
phic modular forms. Of course, if the condition that f is holomorphic on H is also
relaxed to allow finite-order poles in the upper half-plane, one obtains the space of
meromorphic modular forms.

Recalling that Zwegers’s µ-function is part of a non-holomorphic modular form, one
can try to classify such functions by placing them into a more general framework. For
this, we need a natural family of non-holomorphic modular forms. Zwegers’s functions
are rather smooth, so it seems natural to require them to be real analytic. Recall
that µ is holomorphic in τ and ξ1/2 sends R to a weight 3/2 unary theta function.
Thus ξ1/2 sends µ̂ to a weight 3/2 unary theta function. Since the weight 3/2 unary

theta function is holomorphic, it is annihilated by ∂
∂τ

, and hence by ξ3/2, in particular.
Similarly,

ξ2 (E∗2(τ)) = − 3

π
ξ2

(
1

y

)
= − 3

π
2iv2 i

2

∂

∂v

(
1

v

)
=

3

π
.

Hence ξ0 ◦ ξ2 (E∗2) = 0. These examples are part of a more general family of non-
holomorphic modular forms satisfying a certain differential equation. For κ ∈ 1

2
Z,

define the weight κ hyperbolic Laplacian

∆κ := −v2

(
∂2

∂x2
+

∂2

∂v2

)
+ ikv

(
∂

∂x
+ i

∂

∂v

)
= −ξ2−κ ◦ ξκ.

Then a harmonic Maass form of weight κ on Γ is a real-analytic function F : H→ C
satisfying the following.

(1) We have F|κM = F for every M ∈ Γ.
(2) The function F is annihilated by ∆κ (i.e., ∆κ(F) = 0).
(3) The function F has at most linear exponential growth at all cusps of Γ.
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If the second condition is replaced with ∆κ(F) = λF , then we call F a weak Maass
form with eigenvalue λ.

Assuming that Γ is a congruence subgroup, a harmonic Maass form F has a Fourier
expansion

F(τ) =
∑
n∈Z

aF ,v(n)q
n
`∞ .

We assume without loss of generality that `∞ = 1. This Fourier expansion has a
natural splitting into a holomorphic part F+ and a non-holomorphic part F−, so that

F = F+ + F−.

Since there are two independent solutions to the second-order differential equation
∆κ(F) = 0, for κ < 1 one can write

F+(τ) =
∑

n�−∞

a+
F(n)qn

F−(τ) = a−F(0)v1−κ +
∑
n�∞
n6=0

a−F(n)Γ(1− κ,−4πny)qn,

where Γ(s, y) :=
∫∞
y
ts−1e−tdt is the (upper) incomplete gamma function. The holo-

morphic part is often called a mock modular form.
The kernel of ξκ is meromorphic forms, so in some sense harmonic Maass forms give

a natural second-order extension of meromorphic modular forms. Indeed, if F is a
harmonic Maass form, then ξκ(F) is annihilated by ξ2−κ, and is hence meromorphic.
The fact that F is real analytic on H implies that ξκ(F) is furthermore weakly holo-
morphic. We saw in the last lecture that ξκ(F) satisfies weight 2− κ modularity, so it
is thus a weight 2− κ weakly holomorphic modular form. If one is given only a mock
modular form (such as one of Ramanujan’s mock theta functions), then one calls the
resulting weight 2−κ form the shadow of the mock modular form (since it is “hidden”
if one is only given the mock modular form). The shadows of the mock theta functions
were all unary theta functions.

2.2. Growth of the coefficients. The coefficients of negative-weight weakly holo-
morphic modular forms and mock modular forms have been studied by a number of
authors. Consider first a well-known example given by the partition function. Let
p(n) denote the number of partitions of an integer n (i.e., the number of distinct ways
to write n as a sum of positive integers, where the order is irrelevant). Then the
generating function is

P (z) := 1 +
∞∑
n=1

p(n)qn =
1∏∞

n=1(1− qn)
,

which is essentially the weight −1/2 weakly holomorphic modular form 1
η
. Hardy and

Ramanujan developed the Circle Method to obtain an asymptotic formula for p(n).
Note that by the Residue Theorem

1

2πi

∫
P (z)q−n−1dq = p(n),
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where the integral is any contour around zero. In the Circle Method, one splits this
integral into major and minor arcs in order to obtain the main asymptotic growth of
p(n) and an error term. Doing so, Hardy and Ramanujan obtained

p(n) ∼ 1

4n
√

3
eπ
√

2n
3 .

Rademacher refined Hardy and Ramanujan’s methods by choosing a better contour for
which he could obtain better bounds. Rademacher then obtained a sequence of bounds
with increasing accuracy (i.e., with decaying error term) and ultimately obtained what
is known as an exact formula for p(n). Namely, letting Is(x) denote the I-Bessel
function and defining the Kloosterman sum

Ac(n) :=
1

2

√
c

12

∑
x (mod 24c)

x2≡−24n+1 (mod 24c)

χ12(x)e
πix
6c ,

Rademacher showed that

p(n) =
2π

(24n− 1)
3
4

∞∑
c=1

Ac(n)

c
I 3

2

(
π
√

24n− 1

6c

)
.

Rademacher and Zuckerman then later showed similar exact formulas for all negative-
weight weakly holomorphic modular forms. Roughly speaking, they showed that the
nth coefficient of a weight κ < 0 weakly holomorphic modular form is a sum of
Kloosterman sums times I-Bessel functions.

Knopp then investigated a sort of converse question for this. The question that he
addressed was whether any function whose Fourier coefficients had the same shape
as Rademacher’s formula were always the coefficients of a modular form. Knopp
answered this converse question in the negative. Namely, he found certain examples of
forms which missed modularity in a “predictable way” (they are period polynomials)
which have formulas with the same shape as Rademacher and Zuckerman’s formulas
for negative weight weakly holomorphic modular forms. It turns out that Knopp had
uncovered families of (integral weight) mock modular forms, but their connections to
Ramanujan’s mock theta functions would not be discovered for many years. Namely,
the completions of the functions investigated by Knopp were not known at the time.

2.3. Formulas for the coefficients of the mock theta functions. Recall the
third-order mock theta function

f(q) := 1 +
∞∑
n=1

qn
2

(1 + q)2 · · · (1 + qn)2
= 1 +

∞∑
n=1

α(n)qn.

Ramanujan claimed that

α(n) =
(−1)n−1

√
6√

24n− 1
eπ
√

n
6
− 1

144 +O

(
e
π
2

√
n
6
− 1

144

√
24n− 1

)
10



Dragonette proved this claim in her Ph.D. thesis and Andrews extended her work in
his Ph.D. thesis to obtain the asymptotic formula

α(n) =
π

(24n− 1)
1
4

b√nc∑
c=1

A2c

(
n− c(1+(−1)c)

4

)
c

I 1
2

(
π
√

24n− 1

12c

)
+O(nε) .

Noting the similarity to the exact formula for the partition function, the Andrews–
Dragonette Conjecture claimed that

α(n) =
π

(24n− 1)
1
4

∞∑
c=1

A2c

(
n− c(1+(−1)c)

4

)
c

I 1
2

(
π
√

24n− 1

12c

)
. (2.1)

However, since f(q) is not modular, the techniques used by Rademacher and Zucker-
man did not yield a sufficiently small error term to allow the sum to go to infinity.

Following Zwegers’s realization of the mock theta functions as part of a modular
object (namely, as the holomorphic part of a harmonic Maass form), Bringmann and
Ono realized that the modularity properties could be used to obtain the exact formula
(2.1).

2.4. Poincaré series and Bringmann–Ono. Instead of arguing via the Circle Method,
Bringmann and Ono employed Poincaré series to obtain their exact formula. A
Poincaré series is formed by taking a test function φ : H→ C and defining

Pκ,Γ,φ :=
∑

M∈Γ∞\Γ

φ|κM.

Whenever the series converges absolutely and locally uniformly, The function Pκ,Γ,φ
satisfies weight κ modularity on Γ. The choice φ(τ) := 1 yields the Eisenstein series,
which is part of a family of weakly holomorphic modular forms Pκ,m given by taking
φ(τ) = φm(τ) := e2πimτ

Now set
Mκ,s(w) := |w|−

κ
2Msgn(w)κ

2
,s− 1

2
(|w|),

where Mν,µ is the M -Whittaker function and choose (recall that τ = u+ iv)

ϕκ,m,s(τ) :=Mκ,s(4πmv)e2πimu.

One can check that ϕκ,m,s is an eigenfunction under ∆κ with eigenvalue (s− κ/2)(1−
s− κ/2). Hence the Poincaré series

Pκ,m,Γ,s :=
∑

M∈Γ∞\Γ

ϕκ,m,s|κM

taken from choosing φ = ϕκ,m,s is also an eigenfunction, as long as it converges ab-
solutely and locally uniformly. In particular, choosing s = κ

2
or s = 1 − κ

2
yields a

harmonic Maass form Pκ,m. The series converges absolutely and locally uniformly for
Re(s) > 1, and in particular for κ < 0 or κ > 2 we obtain a harmonic Maass form.

A key property about harmonic Maass forms is the fact that if they do not ex-
hibit growth towards the cusps, then they must be holomorphic modular forms; this
is a result of Niebur, who studied the weight zero version of these Poincaré series.
Thus for weight < 0 they must exhibit growth towards the cusps. In other words,

11



a negative-weight harmonic Maass form is uniquely determined by the terms in its
Fourier expansion F+ + F− which exhibit growth. The sum of such terms is known
as the principal part of F . In other words, the principal part is the terms in F+ with
n < 0 or in F− with n ≥ 0. For κ < 0, we see that the Poincaré series Pκ,m then form
a basis of the space of harmonic Maass forms of weight κ (on Γ).

The principal part of each Pκ,m is given by the term coming from the identity matrix,
and is hence essentially ϕκ,m,1−κ/2. We may further split ϕκ,m,1−κ/2 naturally into its
holomorphic and non-holomorphic parts to obtain the following.

Proposition 2.1. Suppose that κ < 0. For m < 0, the principal part of Pκ,m is a
constant multiple of qm. For m = 0, the principal part is a constant multiple of v1−κ,
and for m > 0, the principal part is a constant multiple of Γ(1− κ,−4πmv)qm.

The idea now to prove the Andrews–Dragonette Conjecture is to compute the co-
efficients of the Poincaré series and then write f(q) as an explicit linear combination
of the Poincaré series. One first needs to determine the group Γ under consideration.
Zwegers had investigated the completion and modularity properties of f(q) as part
of a vector-valued modular form. As a consequence of his results, one obtains the
following:

Theorem 2.2 (Zwegers, Bringmann–Ono). The function q−1f(q24) is the holomor-
phic part of a weight 1/2 harmonic Maass form on Γ0(144), where as usual we have
Γ0(N) := {( a bc d ) ∈ SL2(Z) : N | c}. Moreover, it has a simple pole at i∞ and no other
singularities.

Hence we are interested in taking Γ = Γ0(N). By Theorem 2.2 and the fact that the
principal part uniquely determines the form up to holomorphic modular forms, one
may use Proposition 2.1 to guess that q−1f(q24) is a constant multiple of P1/2,−1. It
would then seem that the question is resolved after computing the Fourier expansion
of P1/2,−1. However, the Poincaré series does not converge absolutely in this case, so
some care is needed. In order to address this issue, one computes the Fourier expansion
of Pκ,Γ0(N),m,s for Re(s) > 1 and then analytically continues to s = 3/4.

By rewriting the sum over Γ∞\Γ0(N) as a sum over (c, d) = 1 (like the Eisenstein
series) and writing the inner sum in d (assuming that we have absolute convergence),
we may compute the Fourier expansion by Poisson summation,∑

n∈Z

g(n) =
∑
n∈Z

ĝ(n),

where ĝ is the Fourier transform. Assume that m < 0. Then one obtains that the
coefficient of qn have the same shape as (2.1) and the coefficient of Γ(1− κ,−4πnv)qn

are essentially the same, except that the I-Bessel function has been replaced with the
J-Bessel function. More generally, for Re(s) > 1, the parameter of the Bessel functions
is replaced with 2s − 1. Using bounds for the Kloosterman sums, one can show that
the Fourier expansion may be analytically continued beyond s = 3/4, yielding the
Andrews–Dragonette conjecture.

Applications of Fourier coefficients of mock modular forms do not end there. For
example, one may interpret f(q) as the generating function for a certain partition-
theoretic invariant, and further examples of this invariant yield more mock modular

12



forms. After Ramanujan famously found the congruences for the partition function

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11),

in 1944, Dyson (an undergraduate at the time) tried to find a “combinatorial” expla-
nation for these congruences. He defined a statistic known as the rank of a partition,
which is defined to be the size of the largest part minus the number of parts. He
conjectured that for the first 2 congruences, the rank modulo 5 (resp. modulo 7)
equally splits the partition into 5 (resp. 7) distinct groups each of the same size (thus
giving an explanation why the size is divisible by 5 (resp. 7). This was later proven
by Atkin and Swinnerton-Dyer. Dyson also proposed that there was a similar statistic
(that he called the “crank”) which explained all 3 congruences; this was later found
by Andrews and Garvan. Let N(m,n) denote the number of partitions of n with rank
m. Then the rank generating function is given by

R(w; q) := 1 +
∞∑
n=1

∞∑
m=−∞

N(m,n)wmqn =
∞∑
n=1

qn
2∏n

`=1 (1− wq`) (1− w−1q`)

Plugging in w = 1, we get
R(1; q) = P (z),

while w = −1 yields
R(−1; q) = f(q).

In other words, f(q) is a generating function for the number of partitions of n with
even rank minus the number of partitions with odd rank. It turns out that this is not
a coincidence.

Theorem 2.3 (Bringmann–Ono). If ζ is a root of unity, then R(ζ; q) is the holomor-
phic part of a weight 1/2 harmonic Maass form.

Bringmann and Ono gave the specific completion of R(ζ; q) and modularity proper-
ties of the completion.

As a consequence of their result, let N(r, t;n) be the number of partitions of n with
rank congruent to r modulo t.

Theorem 2.4 (Bringmann–Ono). The generating function (`t := lcm(2c2, 24))
∞∑
n=0

(
N(r, t;n)− p(n)

t

)
q`t(n−

1
24)

is the holomorphic part of a weight 1/2 harmonic Maass form.

Theorem 2.4 has a number of interesting consequences. Firstly, For 0 ≤ r < s < t
we may consider

∞∑
n=0

(N(r, t;n)−N(s, t;n)) q`t(n−
1
24).

This is also the holomorphic part of a weight 1/2 harmonic Maass form. There is a
natural symmetry of partitions which implies that N(r, t;n) = N(t−r, t;n), so one can

13



also restrict 0 ≤ r < s ≤ t
2
. By investigating the asymptotics of the Fourier coefficients,

one can then determine inequalities like N(r, t;n) > N(s, t;n) for n sufficiently large.
This leads to the resolution of a conjecture of Andrews and Lewis (up to a finite
number of exceptions where equality holds).

Theorem 2.5 (Bringmann). For n > 0, we have

N(0, 3;n) < N(1, 3;n) if n ≡ 0, 2 (mod 3),

N(0, 3;n) > N(1, 3;n) if n ≡ 1 (mod 3).

This is part of a more general phenomenon.

Theorem 2.6 (Bringmann–K.). Assume that c > 9 is an odd integer. If 0 ≤ a < b ≤
c−1

2
, then for n sufficiently large (depending on a, b, c), we have

N(a, c;n) > N(b, c;n).

Furthermore, if c = 3, 5, or 7, then for n sufficiently large, the inequality (> or <)
is completely determined by a, b, and the congruence class of n modulo c.

As another application, the non-holomorphic part is closely related to a unary theta
function, and hence is only supported on certain square classes. For a Fourier expan-
sion

∑
n∈Z av(n)qn, consider the “sieved” function∑

n∈Z
n≡A (mod B)

av(n)qn.

Then for A and B chosen appropriately so that the non-holomorphic part vanishes, the
resulting function is weakly holomorphic. Since weakly holomorphic modular forms
with integral coefficients have bounded denominators, this has algebraic applications.

Theorem 2.7 (Bringmann–Ono). Let t be a positive odd integer, and let Q - 6t be
prime. If j is a positive integer, then there are infinitely many non-nested arithmetic
progressions An+B such that for every 0 ≤ r < t we have

N(r, t;An+B) ≡ 0 (mod Qj).
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3. Fourier coefficients of polar harmonic Maass forms and
meromorphic modular forms

3.1. Ramanujan–like expansions. Instead of negative-weight weakly holomorphic
modular forms like 1/η related to the partition function, we investigate here coefficients
of meromorphic modular forms. We relax the holomorphicity condition of modular
forms. A function f is a meromorphic modular form of weight k on Γ ⊆ SL2(Z) with
multiplier system χ (having absolute value 1) if

(1) For allM = ( a bc d ) ∈ Γ, defining f |kM(τ) = f |k,χM(τ) := χ(M)(cτ+d)−kf(Mτ)
with τ ∈ H (we omit χ when it is clear from the context)

f |k,χM = f(τ).

(2) The function f is meromorphic on H.
(3) The function is meromorphic at the cusps:

fσ(τ) =
∑

n�−∞

af,σ(n)q
n
`σ .

If the growth at the cusps instead satisfies vκ/2f(τ) vanishes (i.e., it grows like that of
a cusp form towards cusps), then we call it a meromorphic cusp form.

Consider the example 1/E4. The coefficients grow very fast:

1

E4(τ)
= 1− 240q + 55440q2 − 12793920q3 + 2952385680q4

− 681306078240q5 + 157221316739520q6 + . . .

Specifically, since there is a pole of 1/E4 at ρ, the radius of convergence around i∞must
not include ρ. Specifically, it converges for Im(τ) >

√
3/2. Ramanujan conjectured

and Bialek later proved that

1

E4(τ)
=
∞∑
n=0

βnq
n

with (λ norms from OQ(ρ), with ρ := e
πi
6 )

βn := (−1)n
3

E6(ρ)

∑
(λ)

∑
(c,d)

h(c,d)(n)

λ3
e
πn
√
3

λ . (3.1)

Here (c, d) runs over “distinct” elements cρ + d with norm λ. Unlike the Fourier
expansions of weakly holomorphic modular forms, the expansion does not converge
everywhere. Finally, we let h(1,0)(n) := (−1)n/2, h(2,1)(n) := 1/2, and for λ ≥ 7 we let
(a, b) ∈ Z2 be any solution to ad− bc = 1 and set

h(c,d)(n) := cos

(
(ad+ bc− 2ac− 2bd)

πn

λ
− 6 arctan

(
c
√

3

2d− c

))
.

Although it may not be clear from this definition, the h(c,d) are independent of the
choice of a and b.
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Hardy and Ramanujan showed that 1/E6 has a similar shape. It is thus natural to
define (z = z1 + iz2, b prim. ideals)

Fk,j,r(τ, z) := z−j2

∞∑
m=0

∑∗

b⊆OQ(z)

Ck (b,m)

N(b)
k
2
−j

(4πm)re
2πmz2
N(b) e2πimτ .

Here Ck is similar to the h(c,d).
Hardy and Ramanujan and then Bialek, Berndt–Bialek, and Berndt–Bialek–Yee

used the Circle Method to compute the coefficients. One has to be careful because the
Fourier expansion doesn’t converge everywhere. The calculations become increasingly
difficult as the order of the poles increase. Berndt–Bialek–Yee studied forms with
second-order poles in particular and the relevant calculations are quite long.

3.2. Poincaré series. Petersson attacked the problem differently. He constructing
Poincaré series.

In particular, he computed the Fourier expansion of negative-weight meromorphic
cusp forms with only simple poles (throughout this section, k ≥ 2).

Theorem 3.1 (Petersson). If f is a weight 2 − 2k < 0 meromorphic cusp form with
only simple poles, then f has a Fourier expansion of the type

f(τ)
.
=

∑
z∈Γ\H

ordz(f)=−1

Resτ=z(f(τ))
∞∑
m=0

P2k,−m(z)qm.

Here P2k,−m are the weakly holomorphic Poincaré series

P2k,m(z) :=
∑

M∈Γ∞\SL2(Z)

ϕm
∣∣
2k
M(z),

where k ∈ N≥2 and for m ∈ Z
ϕm(z) := e2πimz.

In the case of simple poles, it turns out that the formulas of Ramanujan are simply
evaluations of Poincaré series at the points where poles occur. The norm of cz + d is
λ = |cz + d|2 and Im(Mz) = z2

|cz+d|2 , so the exponential becomes

e−2πimRe(Mz)e2πmIm(Mz) = e−2πimRe(Mz)e
2πmz2
λ ;

we directly see the exponential which occurred in (3.1) (for z = ρ), while the other
factor contributes to the cosine.

To obtain this result, let

H2k(z, τ) := 2πi
∑

M∈Γ∞\SL2(Z)

1

1− e2πi(τ−z)

∣∣∣
2k,z
M

The function H2k is meromorphic in both z and τ (with simple poles, unless the
residue vanishes). It is a meromorphic modular form of weight 2k as a function of z,
and Petersson furthermore showed that

H2k(z, τ)
.
=

∞∑
m=0

P2k,−m(z)qm.
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Hence, in order to obtain Theorem 3.1, the main step is the following.

Theorem 3.2 (Petersson). If f is a weight 2−2k meromorphic cusp form with simple
poles, then there exist z1, . . . , zr and c` ∈ C

f(τ) =
r∑
`=1

c`H2k (z`, τ) .

Indeed, Petersson obtained a converse theorem, classifying the choices of c` for which
resulting form is indeed modular. The classification depends on a certain consistency
condition from the Fourier coefficients and elliptic coefficients of cusp forms of weight
2k. The elliptic expansion of a cusp form g around z is (Xz(τ) := τ−z

τ−z )

g(τ) = (τ − z)−2k
∑

n�−∞

ag,z(n)Xn
z (τ). (3.2)

Namely, if f is a weight 2− 2k meromorphic modular form and g is a weight 2k cusp
form, then the product is a weight 2 meromorphic modular form. It turns out that the
residue of fg at every point must vanish. This gives a necessary consistency condition,
which also turns out to be sufficient for the sum of the H2k functions to be modular.

Petersson’s proof is useful for showing that the Fourier coefficients of forms with
simple poles have the desired shape, but other Poincaré series are needed to address
higher order poles. Let

H2k,`(z, τ) := 2πi
∑

M∈Γ∞\SL2(Z)

z−`2

1− e2πi(τ−z)

∣∣∣
2k,z
M

and

H
(r)
2k,`(z, τ) :=

∂r

∂τ r
H2k,`(z, τ).

Lemma 3.3 (Bringmann–K.). The Fourier coefficients of H
(r)
2k,` agree with F2k,`,r.

Hence in order to obtain a formula for coefficients of meromorphic cusp forms with
higher order poles, one needs a classification like Theorem 3.2 for higher order poles.
Petersson has provided such a classification. For ν ≤ −1, define

Y2−2k,ν(z, τ) :=
1

(−ν − 1)!

∂−ν−1

∂Xz(α)−ν−1

[
(α− z)2kH2k(α, τ)

]
α=z

.

The differential operator is naturally connected to the elliptic expansion (3.2).
Petersson showed the more general classification below.

Theorem 3.4 (Petersson). If f(τ) is a meromorphic modular form with poles of order
at most R, then f is a linear combination of Y2−2k,ν(z, τ) with |ν| ≤ R.

By showing that Y2−2k,ν is itself a linear combination of the H
(r)
2k,` whenever |ν| ≤ 3,

the following was shown.

Theorem 3.5 (Bringmann–K.). If f is a negative-weight meromorphic cusp form with
poles of order at most 3, then f is a linear combination of the Fm,j,r functions.

As the order of the poles increase, the proof becomes slightly more complicated, but
is still less involved than the calculations with the Circle Method.
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3.3. Polar harmonic Maass forms. The results of the previous section turn out to
be much more general.

Theorem 3.6 (Bringmann–K.). If f is a negative-weight meromorphic cusp form or
quasi-modular form, then f is a linear combination of the Fm,j,r functions.

In order to obtain this more general result, one employs the theory of polar harmonic
Maass forms. These are harmonic Maass forms which can also have singularities in
the upper half-plane.

The key is to realize H2k(τ, z) as the meromorphic part of a polar harmonic Poincaré
Maass form v2k−1Ψ2k(z, τ), where we have the Poincaré series

Ψ2k(z, τ) :=
∑

M∈SL2(Z)

(z− τ)−2kXτ (z)
−1
∣∣∣
2k,z
M.

The function v2k−1Ψ2k(z, τ) is a weight 2k meromorphic modular form as a function
of z and a weight 2− 2k polar harmonic Maass form as a function of τ .

By repeatedly applying the Maass raising operator

Rκ,z := 2i
∂

∂z
+
κ

z2

in the z variable, one obtains functions which are still harmonic as a function of τ , but
have higher order poles. Specifically, define repeated raising by

Rn
2k,z := R2k+2n−2,z ◦ · · · ◦R2k,z;

this sends a weight 2k object to a weight 2k+2n object. Using the image of v2k−1Ψ2k(z, τ)
under these operators as a basis instead of Petersson’s Y -functions, we have the fol-
lowing.

Proposition 3.7. Every meromorphic cusp form of weight 2 − 2k is a linear combi-
nation of the functions

Rn
2k,z

(
v2k−1Ψ2k(z, τ)

)
.

Furthermore, a linear combination∑
z∈H

rz∑
n=0

cn,`R
n
2k,z

(
v2k−1Ψ2k(z, τ)

)
is a meromorphic cusp form if and only if its non-meromorphic part vanishes.

This classification is like Theorem 3.4, except that while he was investigating whether
the a priori meromorphic linear combination was modular, the above proposition
checks whether an a prior modular object is meromorphic. A key step to using the
above classification to obtain formulas for all meromorphic modular forms is the fol-
lowing identity:

Rn
2k,z (Ψ2k(z, τ)) =

n∑
j=0

(2k + n− 1)!

(2k + n− 1− j)!

(
n

j

)
(−2i)n−j

∂n−j

∂τn−j
H2k+2n,j(z, τ),
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where H2k,` is a polar harmonic completion of H2k,`. Namely, taking the meromorphic
parts of each side, we have

Rn
2k,z (H2k(z, τ)) =

n∑
j=0

(2k + n− 1)!

(2k + n− 1− j)!

(
n

j

)
(−2i)n−j

∂n−j

∂τn−j
H2k+2n,j(z, τ). (3.3)

The right-hand sides have the correct shape to yield Theorem 3.6.

3.4. Divisors of modular forms. In the above, we assumed that k ≥ 2, but it is
natural to ask about the case k = 1. For this, we extend to Γ0(N), since the case
N = 1 is not as interesting. In this case, it is natural to attempt to use Hecke’s
trick to extend the Poincaré series to weight 2. Due to the poles occurring in the
upper half-plane and the fact that the Fourier expansion does not always exist, there
is some care needed, however (specifically, one cannot analytically continue via the
Fourier expansion because this would only give a continuation in part of H). Define
for z, τ ∈ H and s ∈ C with Re(s) > 0

PN,s(z, τ) :=
∑

M∈Γ0(N)

ϕs (Mz, τ)

j (M, z)2 |j (M, z) |2s
(3.4)

with j(M, τ) := (cτ + d) and

ϕs(z, τ) := v1+s(z− τ)−1(z− τ)−1 |z− τ |−2s .

One splits PN,s into three pieces. The first piece is those elements of Γ∞, the second is∑
M∈Γ0(N)\Γ∞

ϕs (Mz, τ)− ϕs (M(i∞), τ)

j (M, z)2 |j (M, z) |2s
,

and the third is ∑
M∈Γ0(N)\Γ∞

ϕs (M(i∞), τ)

j (M, z)2 |j (M, z) |2s
.

The first two pieces turn out to converge absolutely for Re(s) > −1, while the last
piece can be analytically continued via its Fourier expansion (as a function of z).
The reason for this splitting is that the first two pieces have poles and hence their
Fourier expansions do not converge everywhere, while the third piece does not converge
absolutely, but its Fourier expansion exists everywhere and it can be analytically
continued.

The analytic continuation to s = 0 we write as vΨ2,N(z, τ). We normalize to define

H∗N,τ (z) :=:= − v

2π
Ψ2,N(z, τ).

This turns out to be harmonic both as a function of z (in weight 2) and in τ (in weight
0). Its meromorphic part is a quasi-modular form (like E2), and its non-meromorphic
part is a constant multiple of 1/v. As z→ τ , it satisfies

H∗N,τ (z) =
ωN,τ
2πi

1

z− τ
+O(1), (3.5)
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where eN,τ is half of the size of the stabilizer of τ in Γ0(N). At cusps σ 6= i∞, one
also defines

H∗N,σ(z) := lim
τ→σ

H∗N,τ (z).

This exhibits a constant term as z approaches the cusp σ. There is a similar definition
at the cusp i∞, although the limit does not directly exist.

Note that
D(f)

f
,

where D := 1
2πi

∂
∂τ

(also written Θ), is also a quasi-modular form. To cancel off the
terms which grow, it is natural to define

fdiv(z) :=
∑

τ∈X0(N)

1

ωN,τ
ordτ (f)H∗N,τ (z). (3.6)

The following then holds.

Theorem 3.8 (Bringmann–K.–Löbrich–Ono–Rolen). If S2(Γ0(N)) denotes the space
of weight 2 cusp forms on Γ0(N), then

fdiv(z) ≡ k

4πz2

− Θ(f(z))

f(z)
(mod S2(Γ0(N))).

From Theorem 3.8 and the asymptotic growth of the coefficients of H∗N,τ (from a
Ramanujan-like formula in weight 2), one can determine the points τ for which there
are poles and zeros, and furthermore can determine the orders of these poles and zeros
because those the the multiplicity with which HN,τ occurs in fdiv. This allows one to
(numerically) compute the divisor of f given only the Fourier expansion (since Θ(f)
can also be directly computed via the Fourier expansion).
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4. Regularized Petersson inner products for meromorphic modular
forms

For simplicity, we mostly assume integral weight and modularity for SL2(Z) through-
out.

4.1. Definition of the inner product. Considering the variables z and z as inde-
pendent variables, note that for a weight 2k modular form f(z), the function f(z)
satisfies weight 2k modularity as a function of z. Furthermore, writing z = x+ iy ∈ H,
the function y2k satisfies simultaneous weight −2k modularity in both z and z because

Im(Mz) = Im

(
az + b

cz + d

)
=

Im((az + b)(cz + d))

|cz + d|2
=

y

|cz + d|2
,

where we used the fact that ad− bc = 1.
Petersson [14] then realized that, for functions f and g satisfying modularity for all

M ∈ SL2(Z), the function

f(z)g(z)y2k

is SL2(Z)-invariant. Moreover, the metric

dxdy

y2

is also SL2(Z)-invariant. Hence the integral

〈f, g〉 :=

∫
SL2(Z)\H

f(z)g(z)y2k dxdy

y2
(4.1)

is well-defined whenever it converges absolutely. Using bounds for cusp forms (in
particular, they exponentially decay as y →∞), one can show that the integral (4.1)
converges absolutely for f, g ∈ S2k. This exponential decay also suffices to show
convergence when taking the inner product between f ∈ S2K and the Eisenstein series
E2k.

4.2. Petersson coefficient formula. The Petersson coefficient formula uses an ex-
plicit evaluation of the inner product to compute the Fourier coefficients of modular
forms. To describe this result, we require the classical Poincaré series (see [16, 17])

P2k,m(z) :=
∑

M∈Γ∞\SL2(Z)

ϕm
∣∣
2k
M(z), (4.2)

where k ∈ N≥2 and for m ∈ Z
ϕm(z) := e2πimz.

As discussed in the second talk, these converge locally and absolutely uniformly. For
m = 0, the Poincaré series is precisely the Eisenstein series, while for m > 0 we have
P2k,m ∈ S2k and for m < 0 we have P2k,m ∈M !

2k.

Theorem 4.1 (Petersson coefficient formula). If f ∈ S2k and m ∈ N, then

〈f, P2k,m〉 =
(2k − 2)!

(4πm)2k−1
af (m).
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Sketch of proof. Plugging in the definition (4.2) of the Poincaré series P2k,m and choos-
ing a fundamental domain F for SL2(Z)\H (a “nice” connected set of representatives
z ∈ H of the orbits of SL2(Z)\H under fractional linear transformations), we unfold
the integral on the left-hand side by rewriting (formally, but this is valid because of
the exponential decay of cusp forms towards the cusps)∫

SL2(Z)\H
f(z)

∑
M∈Γ∞\SL2(Z)

ϕm(Mz)

(cz + d)2k
y2k dxdy

y2

=
∑

M∈Γ∞\SL2(Z)

∫
F
f(Mz)ϕm(Mz)Im(Mz)2k dxdy

y2

=
∑

M∈Γ∞\SL2(Z)

∫
MF

f(z)ϕm(z)y2k dxdy

y2
=

∫
Γ∞\H

f(z)ϕm(z)y2k dxdy

y2
. (4.3)

Since the fundamental domain for Γ∞\H is very simple, this unfolding argument results
in the double integral ∫ ∞

0

∫ 1

0

f(z)ϕm(z)y2k dxdy

y2
.

The integral over x essentially picks off the mth coefficient and then explicitly com-
puting the integral over y yields the claim. �

4.3. Orthogonal splitting. The inner product on S2k is positive-definite. Hence,
by the Gram-Schmidt process, one can construct an orthonormal basis. A particular
choice of the basis elements turns out to be very natural. Namely, one can obtain an
orthonormal basis of Hecke eigenforms. Why are these orthogonal? Since the Hecke
operators are Hermitian, we have

λf (n) 〈f, g〉 = 〈λf (n)f, g〉 = 〈f |2kTn, g〉 = 〈f, g|2kTn〉 = 〈f, λg(n)g〉 = λg(n) 〈f, g〉 .

Since λf (n) 6= λg(n), this leads to a contradiction if 〈f, g〉 6= 0. We thus conclude
that f and g are orthogonal to each other. Hence the splitting of S2k into eigenspaces
precisely yields the orthogonal splitting, with the orthonormal basis given by the Hecke
eigenforms normalized such that ‖f‖2 = 1.

We note that the other normalization af (1) = 1 is also natural. Under this normal-
ization (and appropriately normalizing the Hecke operators), the coefficients af (n) and
the eigenvalues λf (n) coincide. This realization “de-mystifies” the coefficients of the
Hecke eigenforms and plays an important role in understanding Fourier expansions.

4.4. Inner products for weakly holomorphic modular forms.

4.4.1. The regularization of Petersson, Harvey–Moore, and Borcherds and its exten-
sion. For f, g ∈ M !

2k, the integral (4.1) generally diverges. Petersson established a
Cauchy principal value for the integral as a partial solution to this problem. Instead
of integrating over the full fundamental domain, we integrate over a cut-off fundamen-
tal domain whose closure does not include the cusp on the boundary of the chosen
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fundamental domain. In our case, the cusp is i∞ and the cut-off fundamental domain
is given by

FT :=

{
z ∈ H : |z| ≥ 1, y ≤ T, −1

2
≤ x ≤ 1

2

}
.

For f, g ∈M !
2k, Petersson then defined the regularized inner product (see [15])

〈f, g〉 := lim
T→∞

∫
FT
f(z)g(z)y2k dxdy

y2
. (4.4)

The key to the above regularization is that it essentially gives an ordering to the
integrals over x and y.

This construction was further independently rediscovered and extended by Harvey–
Moore [11] and Borcherds [2] by multiplying the integrand by ys for some s ∈ C
with Re(s) � 0 and then taking the constant term of the Laurent expansion of the
meromorphic continuation (in s) at s = 0.

One can use the regularized inner product to show that for m < 0 the Poincaré series
P2k,m, defined in (4.2), is orthogonal to cusp forms. This was shown by Petersson in a
much more general setting in [15, Satz 4].

The regularization of Petersson/Harvey–Moore/Borcherds does not always converge,
however. In particular, Petersson found a necessary and sufficient condition for his
regularization (4.4)to converge (see [15, Satz 1]) and Petersson norms once again pose a
problem, as they did for the Eisenstein series. This problem has been recently resolved
by Bringmann, Diamantis, and Ehlen [3], who were able to extend the regularization in
a way so that the inner product 〈f, g〉 is well-defined and finite for all f, g ∈M !

2k. The
basic idea is to multiply the integrand by an invariant function hs(z) which satisfies
h0(z) = 1 and such that the integral converges for Re(s) sufficiently large. One then
takes the analytic continuation to s = 0 as the definition of the inner product. We do
not give any of the technical details here, but the reader is encouraged to look at [3,
Section 3, and in particular Theorem 3.2].

4.4.2. Theta lifts. The inner product has been used by many authors (for example, in
[2] and [6]) to obtain theta lifts from modular forms of one type to modular forms of
another type. To give a rough idea, one defines a two-variable theta function Θ(z, τ)
which is modular in both variables (one calls this function the theta kernel), but which
satisfies a different kind of modularity in each variable (for example, suppose that it
satisfies weight 2k modularity as a function of z and weight k + 1/2 modularity as a
function of τ). Taking the inner product in one variable against another function f
satisfying the same type of modularity then yields a new function in the other variable
satisfying the other type of modularity. In other words, in the example above, if f
satisfies weight 2k modularity, then

Φ(f)(τ) := 〈Θ(·, τ), f〉
satisfies weight k + 1/2 modularity. This yields a theta lift Φ from weight 2k modular
forms to weight k + 1/2 modular forms. The example illustrated above is Shintani’s
construction [19] of his lift from integral weight to half-integral weight modular forms
and the lift in the opposite direction can be shown to be one of Shimura’s lifts [18] from
half-integral weight to integral weight (see [13] and [12] for two alternative options for
the theta kernel).
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Lifts from “simpler” spaces with special properties often yield strange or exceptional
modular forms which can be used to understand or narrow down conjectures that are
often precisely false on the image or pre-image of such lifts. For example, the Shimura
lift generally sends cusp forms to cusp forms, but there is an exceptional class of
forms known as unary theta functions in weight 3/2 which are cusp forms but whose
image under the Shimura lift is an Eisenstein series. These unary theta functions are
also counter-examples to the Ramanujan–Petersson conjecture, which states that the
coefficients of weight κ ∈ 1

2
Z cusp forms f satisfy

|af (n)| �f,ε n
κ−1
2

+ε.

The coefficients of the unary theta functions grow like n1/2, contradicting the conjec-
ture in this wide of generality. However, for integral weight cusp forms f ∈ S2k,
the conjecture is a celebrated result of Deligne [7] and it is conjectured that the
Ramanujan–Petersson conjecture holds in half-integral weight as long as f is orthog-
onal to unary theta functions.

4.4.3. Computation of the inner product by the Brunier–Funke pairing. For f, g ∈M !
2k,

we next describe a way to compute the inner product between these two forms. Let
G be a harmonic Maass form for which

ξ2−2k(G) = g.

The inner product between f and g is then given by the Bruinier–Funke pairing
between the function G and f , given by

{f,G} :=
∑
n∈Z

af (−n)a+
G(n), (4.5)

where a+
G(n) is the nth coefficient of the holomorphic part of the Fourier expansion.

In particular, we have

〈f, g〉 = {f,G}. (4.6)

The pairing is useful for computing inner products because only finitely many terms
in (4.5) are non-zero.

Roughly speaking, the pairing is shown by using Stokes Theorem to evaluate the
integral instead of the unfolding method described in Section 4.2. The pre-image G of
g under ξ2−2k naturally appears in this context.

4.5. Inner products for meromorphic modular forms. We would now like to
define an inner product on arbitrary meromorphic modular forms f, g ∈ S2k. However,
an arbitrary meromorphic modular form f ∈ S2k may be decomposed into two pieces,
one of which only has poles at the cusps (i.e., it is in M !

2k) and one of which only has
poles in the upper half-plane (vanishing towards all cusps); we call forms of the second
type weight 2k meromorphic cusp forms and denote the subspace of such forms by
S2k. It thus essentially suffices to consider inner products between forms f, g ∈ S2k

(technically, we also have to take inner products between forms f ∈M !
2k and g ∈ S2k,

but hybrid approaches for the regularizations will work in full generality and we ignore
the details here).
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4.5.1. Regularization of Petersson. The idea that Petersson used to generalize (4.1)
is very similar to the idea used in the regularization (4.4). Instead of cutting off the
fundamental domain away from i∞, one cuts out small neighborhoods around each
pole z of f or g and then shrinks the hyperbolic volume of the neighborhoods to zero
in a limit. In particular, for z ∈ H define the ball

Bε(z) := {z ∈ H : rz(z) < ε} ,
where rz(z) := |Xz(z)| with

Xz(z) :=
z − z

z − z
.

The functions rz(z) are naturally connected to the hyperbolic distance d(z, z) between
z and z = z1 + iz2 in H via the formula

rz(z) = tanh

(
d(z, z)

2

)
.

Let [z1], . . . , [zr] ∈ PSL2(Z)\H be the distinct SL2(Z)-equivalence classes of all of
the poles of f, g ∈ S2k and choose a fundamental domain F∗ such that all z` lie in the
interior of Γz`F∗, where Γz is the stabilizer of z in PSL2(Z). Petersson’s regularized
inner product is then defined by

〈f, g〉 := lim
ε1,...,εr→0+

∫
F∗\(

⋃r
`=1 Bε` (z`))

f(z)g(z)y2k dxdy

y2
. (4.7)

A necessary and sufficient condition for the convergence of the regularization (4.7) is
given by Petersson in [15, Satz 1]. Furthermore, certain Poincaré series related to the
elliptic expansions (Petersson proved an elliptic coefficient formula as well; cf. [15, Satz
9]) with poles in the upper half-plane were also shown to be orthogonal to cusp forms
in [15, Satz 7]. Once again, Petersson’s necessary and sufficient condition implies that
his regularization diverges in particular when evaluating Petersson norms for elements
of S2k which are not cusp forms.

4.5.2. A new regularization. Since Petersson’s regularization still sometimes diverges,
one requires a further regularization; we recall the construction from [5]. The idea is
similar to the regularization of Bringmann–Diamantis–Ehlen; roughly speaking, the
integrand in (4.1) is multiplied by an SL2(Z)-invariant function Hs(τ) which removes
the poles of the integrand whenever Re(s) is sufficiently large. We then take the
constant term of the Laurent expansion around s = 0 to be our regularization. To be
more precise, let [z1], . . . , [zr] ∈ PSL2(Z)\H be the distinct SL2(Z)-equivalence classes
of all of the poles of f and g and define

〈f, g〉 := CTs=0

(∫
SL2(Z)\H

f(z)Hs(z)g(z)y2k dxdy

y2

)
, (4.8)

where

Hs(z) = Hs1,...,sr,z1,...,zr(z) :=
r∏
`=1

hs`,z`(z).

Here

hs`,z`(z) := r2s`
z`

(Mz),
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with M ∈ SL2(Z) chosen such that Mz ∈ F∗. Moreover CTs=0 denotes the constant
term in the Laurent expansion around s1 = s2 = · · · = sr = 0 of the meromorphic
continuation (if existent).

In the same sense that the results in [3] may be viewed as an analytic definition
for a regularized inner product satisfying the Bruinier–Funke pairing for arbitrary
f, g ∈ M !

2k, the above regularization may be viewed as an analytic definition for a
regularized integral giving a similar pairing for all f, g ∈ S2k. However, instead of
defining the pairing via the Fourier expansions, the pairing is defined via the elliptic
expansions of f and a weight 2 − 2k polar harmonic Maass form (i.e., a harmonic
Maass form with singularities in the upper half-plane) G which is a pre-image of g
under the ξ-operator. To describe the pairing, the elliptic expansion of f ∈ S2k around
z ∈ H is given by

f(z) = (z − z)−2k
∑

n�−∞

af,z(n)Xn
z (z). (4.9)

For the polar harmonic Maass form G, we again denote the coefficients of its mero-
morphic part (i.e., of the form in (4.9)) by a+

G,z(n).
Denoting z2 := Im(z) and writing ωz for the size of the stabilizer Γz of z in PSL2(Z),

the pairing is given by (see [4, Proposition 6.1])

{f,G} :=
∑

z∈SL2(Z)\H

π

z2ωz

∑
n∈Z

af,z(n)a+
G,z(−n− 1). (4.10)

It is again important to emphasize that the pairing gives a formula for the inner prod-
uct with only finitely many coefficients in (4.10) non-zero. In comparison, Petersson
evaluated his inner product (4.4) (resp. (4.7)) on [15, pages 42–43] via the Fourier
(res. elliptic) coefficients of the forms f and g themselves, but his evaluation is given
as an infinite sum, so one can only obtain an approximation for the inner product by
computing the Fourier (resp. elliptic) coefficients. In other words, Petersson’s con-
structions are better in the sense that they are given in terms of the coefficients of the
original functions, while one is required to introduce new functions to determine (4.5)
and (4.10), but the sums in these pairings are instead finite.

4.5.3. Higher Greens functions. The regularization (4.8) was used in [5] to compute
the inner product between

fQ(z) = fk,−D,[Q](z) := D
k
2

∑
Q∈[Q]

Q(z, 1)−k

for positive-definite integral binary quadratic forms Q of discriminant −D. These are
weight 2k meromorphic modular forms which have poles of order k at the unique zero
τQ of Q in H. The evaluation of the inner product between two such functions is done
by again using Stokes Theorem to rewrite the inner product as the pairing (4.10) in
terms of the elliptic coefficients of fQ and the elliptic coefficients of the meromorphic
part of a polar harmonic Maass form GQ associated with fQ via the ξ-operator. It
then remains to explicitly compute the elliptic coefficients occurring in (4.10).

In particular, choosing two such binary quadratic forms Q and Q, the inner product
between fQ and fQ is related to the higher Green’s function Gk : H × H → C, which
is uniquely characterized by the following properties:
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(1) Gk is a smooth real-valued function on H×H \ {(z, γz)|γ ∈ Γ, z ∈ H}.
(2) For γ1, γ2 ∈ Γ, we have Gk(γ1z, γ2z) = Gk(z, z).
(3) Denoting ∆0,z := −4y2 ∂

∂z
∂
∂z

, we have

∆0,z (Gk (z, z)) = ∆0,z(Gk (z, z)) = k(1− k)Gk (z, z) .

(4) As z → z
Gk(z, z) = 2ωz log (rz(z)) +O(1).

(5) As z approaches a cusp, Gk(z, z)→ 0.

These higher Green’s functions have a long history, appearing as special cases of the
resolvent kernel studied by Fay [8] and investigated thoroughly by Hejhal in [10], for
example. Gross and Zagier [9] conjectured that their evaluations at CM-points are
essentially logarithms of algebraic numbers, which has been since proven in a number
of cases. To state the connection with inner products, let β(a, b) :=

∫ 1

0
ta−1(1− t)b−1dt

be the beta function, and let Q−D denote the set of positive-definite integral binary
quadratic forms of discriminant −D < 0. Evaluating the elliptic coefficients in (4.10)
for fQ and GQ then yields the following theorem.

Theorem 4.2 (Theorem 1.5 of [5]). For Q ∈ Q−D1 and Q ∈ Q−D2 (−D1,−D2 < 0
discriminants) with [τQ] 6= [τQ], we have

〈fQ, fQ〉 = − π(−4)1−k

(2k − 1)β(k, k)

Gk(τQ, τQ)

ωτQωτQ
.
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