Probabilistic methods and modular forms

Sudhir Pujahari
The University of Hong Kong

Graduate student workshop
Duquesne University Pittsburgh, Pennsylvania

6-th March, 2019

PLAN OF TALK

PLAN OF TALK

- Part-I: Introduction to theory of equidistribution.

PLAN OF TALK

- Part-I: Introduction to theory of equidistribution.
- Part-II: Distribution of gaps between elements of equidistributed sequences.

PLAN OF TALK

- Part-I: Introduction to theory of equidistribution.
- Part-II: Distribution of gaps between elements of equidistributed sequences.
- Part-III: Sato-Tate conjecture and beyond.

Part-I: Introduction to theory of equidistribution.

The story of equidistribution started with the sequence $\{n \theta\}, \theta$ irrational.

The story of equidistribution started with the sequence $\{n \theta\}, \theta$ irrational.

(P.G.L. Dirichlet, 1805 - 1859)
(Source: wikipedia.org)
1842 - Dirichlet showed that there are infinitely many elements of this sequence in any neighborhood of 0 .

(Leopold Kronecker, 1823 - 1891)
(Source: wikipedia.org)
1884 - Kronecker showed that this sequence is in fact dense throughout the interval $[0,1]$.

(P. Bohl)
(1865-1921)

(H. Weyl)
(1885-1955)

(W. Sierpinski)
(1882-1969)
(Source: wikipedia.org)
1909 - Piers Bohl.
1910 - Herman Weyl and Waclaw Sierpinski, investigated the following question:

(P. Bohl)
(1865-1921)

(H. Weyl)
(1885-1955)

(W. Sierpinski)
(1882-1969)
(Source: wikipedia.org)
1909 - Piers Bohl.
1910 - Herman Weyl and Waclaw Sierpinski, investigated the following question:
Question How the sequence $\{n \theta\}$ is distributed in the unit circle, when θ is irrational?

General principles of equidistribution

Let $\left\{x_{n}\right\}$ be a sequence of real numbers in the unit interval $[0,1]$. For a subset I of $[0,1]$, and for a fixed natural number N, let

$$
A_{l}(N):=\#\left\{1 \leq n \leq N ; x_{n} \in I\right\} .
$$

General principles of equidistribution

Let $\left\{x_{n}\right\}$ be a sequence of real numbers in the unit interval $[0,1]$. For a subset I of $[0,1]$, and for a fixed natural number N, let

$$
A_{l}(N):=\#\left\{1 \leq n \leq N ; x_{n} \in I\right\} .
$$

Definition 1

$\left\{x_{n}\right\}$ is said to be equidistributed in the unit interval if for any $I=[a, b] \subset[0,1]$, we have

$$
\lim _{N \rightarrow \infty} \frac{A_{l}(N)}{N}=b-a
$$

Definition 2

A sequence of real numbers $\left\{x_{n}\right\}$ is said to be equidistributed $\bmod 1$ if the sequence $\left\{x_{n}\right\}$ is equidistributed in $[0,1]$.

A sequence $\left\{x_{n}\right\}$ of real numbers is said to be equidistributed $\bmod 1 \Leftrightarrow$ for every $I \subset[0,1]$,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} x_{l}\left(x_{n}\right)=\int_{0}^{1} x_{l}(x) d x .
$$

A sequence $\left\{x_{n}\right\}$ of real numbers is said to be equidistributed $\bmod 1 \Leftrightarrow$ for every $I \subset[0,1]$,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \chi_{l}\left(x_{n}\right)=\int_{0}^{1} \chi_{l}(x) d x .
$$

\Leftrightarrow for all (complex valued) Riemann integrable functions $f(x)$ of period 1,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f\left(x_{n}\right)=\int_{0}^{1} f(x) d x .
$$

A sequence $\left\{x_{n}\right\}$ of real numbers is said to be equidistributed $\bmod 1 \Leftrightarrow$ for every $I \subset[0,1]$,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \chi_{l}\left(x_{n}\right)=\int_{0}^{1} \chi_{l}(x) d x .
$$

\Leftrightarrow for all (complex valued) Riemann integrable functions $f(x)$ of period 1,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f\left(x_{n}\right)=\int_{0}^{1} f(x) d x .
$$

\Rightarrow For all non-zero $m \in \mathbb{Z}$,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i m x_{n}}=0 .
$$

In the year 1916, Weyl investigated the distribution of the sequence $\left\{n^{2} \theta\right\}$, where θ is irrational and proved the following theorem

In the year 1916, Weyl investigated the distribution of the sequence $\left\{n^{2} \theta\right\}$, where θ is irrational and proved the following theorem

Theorem 3 (Weyl, 1916)
$\left\{n^{2} \theta\right\}$ is equidistributed in the unit interval.

In the year 1916, Weyl investigated the distribution of the sequence $\left\{n^{2} \theta\right\}$, where θ is irrational and proved the following theorem

Theorem 3 (Weyl, 1916)
$\left\{n^{2} \theta\right\}$ is equidistributed in the unit interval.
In that paper he gave a criterion for equidistribution in terms exponential sum.

Weyl's Criterion

Theorem 4
Weyl's criterion: A sequence $\left\{x_{n}\right\}$ is e.d $(\bmod 1)$ if and only if

$$
c_{m}:=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} e\left(m x_{n}\right)=0
$$

for every $m \in \mathbb{Z}, m \neq 0, e(t)=e^{2 \pi i t}$.

Weyl's Criterion

Theorem 4
Weyl's criterion: A sequence $\left\{x_{n}\right\}$ is e.d $(\bmod 1)$ if and only if

$$
c_{m}:=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} e\left(m x_{n}\right)=0
$$

for every $m \in \mathbb{Z}, m \neq 0, e(t)=e^{2 \pi i t}$.
Application: If $\theta \notin \mathbb{Q}$, then $\{n \theta\}$ e.d $(\bmod 1)$ in $[0,1]$.

Weyl's Criterion

Theorem 4
Weyl's criterion: A sequence $\left\{x_{n}\right\}$ is e.d $(\bmod 1)$ if and only if

$$
c_{m}:=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} e\left(m x_{n}\right)=0
$$

for every $m \in \mathbb{Z}, m \neq 0, e(t)=e^{2 \pi i t}$.
Application: If $\theta \notin \mathbb{Q}$, then $\{n \theta\}$ e.d $(\bmod 1)$ in $[0,1]$. If $m \neq 0$,

$$
\begin{aligned}
& \frac{1}{N}\left|\sum_{n=1}^{N} e(m n \theta)\right| \\
= & \frac{1}{N}\left|\frac{\sin (\pi m N \theta)}{\sin (\pi m \theta)}\right| \\
\rightarrow & 0 \text { as } N \rightarrow \infty .
\end{aligned}
$$

Definition 5

Consider finite multi sets A_{n} with $\# A_{n} \rightarrow \infty$ as $n \rightarrow \infty$. $\left\{A_{n}\right\}$ is set-equidistributed with respect to a probability measure μ if for every $[a, b] \subset[0,1]$,

$$
\lim _{n \rightarrow \infty} \frac{\#\left\{t \in A_{n}: t \in[a, b]\right\}}{\# A_{n}}=\int_{a}^{b} d \mu
$$

Definition 5

Consider finite multi sets A_{n} with $\# A_{n} \rightarrow \infty$ as $n \rightarrow \infty$. $\left\{A_{n}\right\}$ is set-equidistributed with respect to a probability measure μ if for every $[a, b] \subset[0,1]$,

$$
\lim _{n \rightarrow \infty} \frac{\#\left\{t \in A_{n}: t \in[a, b]\right\}}{\# A_{n}}=\int_{a}^{b} d \mu
$$

In particular, if

$$
A_{n}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}
$$

then the definition is the definition of an equidistributed sequence with respect to μ.

The definition of equidistribution can be generalised to arbitrary interval in the following ways

Definition 6

Consider finite multi sets A_{n} in an interval $[\alpha, \beta]$ with $\# A_{n} \rightarrow \infty$ as $n \rightarrow \infty$. $\left\{A_{n}\right\}$ is set-equidistributed in $[\alpha, \beta]$ with respect to a probability measure μ if for every continuous function $f:[\alpha, \beta] \rightarrow \mathbb{C}$, the following limit holds:

$$
\lim _{n \rightarrow \infty} \frac{1}{\# A_{n}} \sum_{t \in A_{n}} f(t)=\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} d \mu .
$$

In this talk, we will be interested in equidistribution in intervals of unit length.

The definition of equidistribution can be generalised to arbitrary interval in the following ways

Definition 6

Consider finite multi sets A_{n} in an interval $[\alpha, \beta]$ with $\# A_{n} \rightarrow \infty$ as $n \rightarrow \infty$. $\left\{A_{n}\right\}$ is set-equidistributed in $[\alpha, \beta]$ with respect to a probability measure μ if for every continuous function $f:[\alpha, \beta] \rightarrow \mathbb{C}$, the following limit holds:

$$
\lim _{n \rightarrow \infty} \frac{1}{\# A_{n}} \sum_{t \in A_{n}} f(t)=\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} d \mu .
$$

In this talk, we will be interested in equidistribution in intervals of unit length.
For every $m \in \mathbb{Z}$, define "Weyl limits":

$$
c_{m}:=\lim _{n \rightarrow \infty} \frac{1}{\# A_{n}} \sum_{t \in A_{n}} e(m t) .
$$

(I.J Schoenberg, 1903-1990) (N. Wiener, 1926-1964) (Source: wikipedia.org)

Theorem 7 (Wiener-Schoenberg)

A_{n} is equidistributed with respect to some positive continuous measure if and only if the Weyl limits exist for every integer m and

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{|m| \leq N}\left|c_{m}\right|^{2}=0
$$

(P. Erdos, 1913-1996)
(Source: wikipedia.org)

Theorem 8 (Erdös-Turán inequality, 1949)
For any positive integer M and subinterval I of $[0,1]$, there exist constant c_{1} and c_{2} such that

$$
\left|\#\left\{n \leq N: x_{n} \in I\right\}-N \mu(I)\right| \leq \frac{c_{1} N}{M+1}+c_{2}\left|\sum_{m=1}^{M} \frac{1}{m} e\left(m x_{n}\right)\right| .
$$

In 1994, using Beurling-Selberg polynomial Montgomery obtained the following varient of Erdös-Turán inequality;

(H.L. Montgomery)
(Source: wikipedia.org)
In 1994, using Beurling-Selberg polynomial Montgomery obtained the following varient of Erdös-Turán inequality;
Theorem 9
For any positive integer M and $[a, b] \subset[0,1]$, we have

$$
\begin{gathered}
\left|\#\left\{n \leq N: x_{n} \in[a, b]\right\}-N(b-a)\right| \\
\leq \frac{N}{M+1}+\sum_{1 \leq|m| \leq M}\left(\frac{1}{M+1}+\min \left(b-a, \frac{1}{\pi|m|}\right)\right)\left|\sum_{m \leq M} e\left(m x_{n}\right)\right| .
\end{gathered}
$$

Part-II: Distribution of gaps between elements of equidistributed

 sequences.
(Van der Corput, 1890-1975)
(Source: wikipedia.org)

Theorem 10 (Van der Corput,1931)

If for each positive integer s, the sequence $\left\{x_{n+s}-x_{n}\right\}$ is equidistributed $(\bmod 1)$, then the sequence $\left\{x_{n}\right\}$ is equidistributed $(\bmod 1)$.

Let us consider the following classical question:

Let us consider the following classical question: Is the converse of Van der Corput's result true?
Answer: NO!
Example: $\{n \theta\}(\bmod 1), \theta$ is irrational.

Let us consider the following classical question: Is the converse of Van der Corput's result true?
Answer: NO!
Example: $\{n \theta\}(\bmod 1), \theta$ is irrational.
For any natural number N and $0<b<1$, define,

$$
\begin{aligned}
A_{b}(N) & :=\{n \theta(\bmod 1): n \theta(\bmod 1) \leq b, 1 \leq n \leq N\} \\
& \subset\{\{n \theta\}(\bmod 1): n \in \mathbb{N}\}
\end{aligned}
$$

and write them as increasing order as follows:

$$
A_{b}(N)=\left\{0<x_{1} \leq x_{2} \leq x_{3} \leq \cdots \leq x_{N} \leq b<1\right\}
$$

(H. Steinhaus, 1887 - 1972)
(Source: wikipedia.org)
In 1957, Steinhaus conjectured the following:

$$
\#\left\{x_{i+1}-x_{i}: 1 \leq i \leq N\right\} \leq 3
$$

$$
\left(\theta=1-\frac{1+\sqrt{5}}{2}\right)
$$

(Source: idiot's Blog)

$$
\left(\theta=1-\frac{1+\sqrt{5}}{2}\right)
$$

(Source: idiot's Blog)

(Vera Sós)
(Source: wikipedia.org)
The first proof is due to Vera Sós.

Notations/Assumptions

For $1 \leq i \leq r$, Let $\left\{A_{i_{n}}\right\}=\left\{ \pm x_{i}\right\} \subset\left[-\frac{1}{2}, \frac{1}{2}\right]$ be sequences of finite multisets with $\# A_{i_{n}} \rightarrow \infty$.

For every $m \in \mathbb{Z}$, let $c_{i_{m}}, 1 \leq i \leq r$ denote the $m^{t h}$ "Weyl limit" of $\left\{A_{i_{n}}\right\}$ respectively.

Let us assume that $\left\{A_{i_{n}}\right\}$ are equidistributed in $\left[-\frac{1}{2}, \frac{1}{2}\right]$ with respect to the measure $F_{i}(x) d x$ respectively, where

$$
F_{i}(x)=\sum_{m=-\infty}^{\infty} c_{i_{m}} e(m x)
$$

and for every $m \in \mathbb{Z}$,

$$
c_{i_{m}}:=\lim _{n \rightarrow \infty} \frac{1}{\# A_{i_{n}}} \sum_{t \in A_{i_{n}}} e(m t)
$$

Here onwards, let us denote $\{x\}$ as fractional part of x.

Observation 11

Let C_{m} be the $m^{\text {th }}$ Weyl limit of the family

$$
\left\{\left\{ \pm x_{1} \pm x_{2} \pm \cdots \pm x_{r}\right\}, \pm x_{i} \in A_{i_{n}}, 1 \leq i \leq r\right\}
$$

that is for $m \in \mathbb{Z}$,

$$
C_{m}:=\lim _{n \rightarrow \infty} \frac{1}{\prod_{i=1}^{r} \# A_{i_{n}}} \sum_{\substack{x_{i} \in A_{i n} \\ 1 \leq i \leq r}} e\left(m\left\{ \pm x_{1} \pm x_{2} \pm \cdots \pm x_{r}\right\}\right)
$$

Then the Weyl limit

$$
\begin{equation*}
C_{m}=\prod_{i=1}^{r} c_{i_{m}} \tag{1}
\end{equation*}
$$

Theorem 12

If

$$
\begin{equation*}
\sum_{m=-\infty}^{\infty}\left|c_{i_{m}}\right|^{2}<\infty \quad \text { for all } 1 \leq i \leq r \tag{2}
\end{equation*}
$$

then the family

$$
\left\{\left\{ \pm x_{1} \pm x_{2} \pm \cdots \pm x_{r}\right\}, \pm x_{i} \in A_{i_{n}}\right\}
$$

is equidistributed in $[0,1]$ with respect to the measure

$$
\mu=F(x) d x,
$$

where

$$
F(x)=F_{1} * F_{2} * \cdots * F_{r}(x) .
$$

Notations/Assumptions

Let C_{m} be the Weyl limit of the family

$$
\left\{\left\{ \pm x_{1} \pm x_{2} \pm \cdots \pm x_{r}\right\}, \pm x_{i} \in A_{i_{n}}, 1 \leq i \leq r\right\}
$$

Let $I=[a, b] \subset[0,1]$, and $V_{n}=\prod_{i=1}^{r} \# A_{i_{n}}$.
Let $\underline{x}=\left\{ \pm x_{1} \pm x_{2} \pm \cdots \pm x_{r}\right\}$.
Define,

$$
N_{l}\left(V_{n}\right):=\#\left\{\left(x_{1}, x_{2}, \ldots, x_{r}\right) \in A_{1_{n}} \times A_{2_{n}} \times \cdots \times A_{r_{n}}: \underline{x} \in I\right\}
$$

and

$$
D_{l, V_{n}}(\mu):=\frac{1}{V_{n}}\left|N_{l}\left(V_{n}\right)-V_{n} \mu(I)\right|
$$

A Variant of the Erdös-Turán inequality

Theorem 13

If $\sum_{m=-\infty}^{\infty}\left|c_{i_{m}}\right|^{2}<\infty$ for all $1 \leq i \leq r$. Then, for any positive integer M and any $I=[a, b] \subset[0,1]$, we have

$$
\begin{gathered}
\left|D_{l, V_{n}}(\mu)\right| \leq \frac{V_{n}}{M+1}+\sum_{|m| \leq M}\left(\frac{1}{M+1}+\min \left(b-a, \frac{1}{\pi|m|}\right)\right) \\
\left(\mid \prod_{i=1}^{r} \sum_{x \in \in A_{n}} e\left(m x_{i}\right)-\prod_{i=1}^{r} \# A_{i n} c_{i m}\right),
\end{gathered}
$$

where $\mu=F_{1} * F_{2} * \cdots * F_{r}(x) d x$.

PART-III: Sato-Tate conjecture and beyond.

- $S(N, k)$: space of cusp forms of weight k and level N.
- $s(N, k)$: dimension of $S(N, k)$.
- $S(N, k)$: space of cusp forms of weight k and level N.
- $s(N, k)$: dimension of $S(N, k)$.
- $T_{n}: S(N, k) \rightarrow S(N, k)$, n-th Hecke operator.
- $T_{p}^{\prime}=\frac{T_{p}}{p^{(k-1) / 2}}$.

From the Ramanujan-Petersson conjecture: (proved by Deligne, 1974.) we know that, for any prime p not dividing N, the eigenvalues of normalized Hecke operator T_{p}^{\prime} say $\left\{a_{p, i, N}, 1 \leq i \leq s(N, k)\right\}$ lie in $[-2,2]$.

From the Ramanujan-Petersson conjecture: (proved by Deligne, 1974.) we know that, for any prime p not dividing N, the eigenvalues of normalized Hecke operator T_{p}^{\prime} say $\left\{a_{p, i, N}, 1 \leq i \leq s(N, k)\right\}$ lie in $[-2,2]$.

How are they distributed?

From the Ramanujan-Petersson conjecture: (proved by Deligne, 1974.) we know that, for any prime p not dividing N, the eigenvalues of normalized Hecke operator T_{p}^{\prime} say $\left\{a_{p, i, N}, 1 \leq i \leq s(N, k)\right\}$ lie in $[-2,2]$.

How are they distributed?
Horizontal: Fix $S(N, k)$ and vary primes p.

From the Ramanujan-Petersson conjecture: (proved by Deligne, 1974.) we know that, for any prime p not dividing N, the eigenvalues of normalized Hecke operator T_{p}^{\prime} say $\left\{a_{p, i, N}, 1 \leq i \leq s(N, k)\right\}$ lie in $[-2,2]$.

How are they distributed?

Horizontal: Fix $S(N, k)$ and vary primes p.
Vertical: Fix a prime p and vary $S(N, k)$.

Sato-Tate conjecture

(Mikio Sato)

(John Tate)
(Source: wikipedia.org)
Fix $S(N, k)$. Let f be a fixed normalized Hecke eigenform of $S(N, k)$ and let $a_{p}(f)$ denote the eigenvalue of T_{p}^{\prime} relative to f. For every interval $[\alpha, \beta] \subset[-2,2]$,

$$
\lim _{n \rightarrow \infty} \frac{\#\left\{p \leq n: a_{p}(f) \in[\alpha, \beta]\right\}}{\pi(n)}=\int_{\alpha}^{\beta} \mu_{\infty}
$$

where

$$
\mu_{\infty}=\left\{\begin{array}{l}
\frac{1}{\pi} \sqrt{1-\frac{x^{2}}{4}} d x \text { if } x \in[-2,2] \\
0 \text { otherwise }
\end{array}\right.
$$

In a series of papers by Richard Taylor, Michael Harris, Nick Shepherd-Barron, David Geraghty, Laurent Clozel and Tom Barnet-Lamb, this conjecture has now been proved for the cases when $k \geq 2$ and level $N \geq 1$.

In a series of papers by Richard Taylor, Michael Harris, Nick Shepherd-Barron, David Geraghty, Laurent Clozel and Tom Barnet-Lamb, this conjecture has now been proved for the cases when $k \geq 2$ and level $N \geq 1$.

(J.P Serre)
(Source: wikipedia.org)

In a series of papers by Richard Taylor, Michael Harris, Nick Shepherd-Barron, David Geraghty, Laurent Clozel and Tom Barnet-Lamb, this conjecture has now been proved for the cases when $k \geq 2$ and level $N \geq 1$.

(J.P Serre)
(Source: wikipedia.org)
In the year 1997 Serre studied the "vertical" Sato-conjecture by fixing a prime p and varying N and k.

Theorem 14 (Serre, 1997)

Let N_{λ}, k_{λ} be positive integers such that k_{λ} is even, $N_{\lambda}+k_{\lambda} \rightarrow \infty$ and p is a prime not dividing N_{λ} for any λ. Then the family of eigenvalues of the normalized pth Hecke operator

$$
T_{p}^{\prime}\left(N_{\lambda}, k_{\lambda}\right)=\frac{T_{p}\left(N_{\lambda}, k_{\lambda}\right)}{p^{\frac{k_{\lambda}-1}{2}}}
$$

is equidistributed in the interval $\Omega=[-2,2]$ with respect to the measure

$$
\mu_{p}:=\frac{p+1}{\pi} \frac{\sqrt{1-\frac{x^{2}}{4}}}{\left(p^{\frac{1}{2}}+p^{-\frac{1}{2}}\right)^{2}-x^{2}} d x
$$

Theorem 14 (Serre, 1997)

Let N_{λ}, k_{λ} be positive integers such that k_{λ} is even, $N_{\lambda}+k_{\lambda} \rightarrow \infty$ and p is a prime not dividing N_{λ} for any λ. Then the family of eigenvalues of the normalized pth Hecke operator

$$
T_{p}^{\prime}\left(N_{\lambda}, k_{\lambda}\right)=\frac{T_{p}\left(N_{\lambda}, k_{\lambda}\right)}{p^{\frac{k_{\lambda}-1}{2}}}
$$

is equidistributed in the interval $\Omega=[-2,2]$ with respect to the measure

$$
\mu_{p}:=\frac{p+1}{\pi} \frac{\sqrt{1-\frac{x^{2}}{4}}}{\left(p^{\frac{1}{2}}+p^{-\frac{1}{2}}\right)^{2}-x^{2}} d x
$$

Remark In the same year 1997, Conrey, Duke and Farmer studied a "vertical" Sato-Tate conjecture by fixing a prime $p, N=1$ and varying k.

Remark In the same year 1997, Conrey, Duke and Farmer studied a "vertical" Sato-Tate conjecture by fixing a prime $p, N=1$ and varying k.

Theorem 15 (Serre, 1997)

Let $S^{\prime}(N, k)$ be the space of normalised Hecke eigen forms of weight k and level N. For any positive integer d and fixed k,

$$
\#\left\{f \in S^{\prime}(N, k):\left[K_{f}: \mathbb{Q}\right] \leq d\right\}=o(s(N, k)) \text { as } N \rightarrow \infty,
$$

where $K_{f}(n)=\mathbb{Q}\left(\left\{a_{n}(f)\right\}_{n \geq 1}\right)$.

(Kaneenika Sinha)
(Source: IISER Pune)

In the year 2009 Murty and Sinha give explicit estimate on the rate of convergence. They prove the following theorem

(Ram Murty)
(Source: gregblack.ca)

(Kaneenika Sinha)
(Source: IISER Pune)

In the year 2009 Murty and Sinha give explicit estimate on the rate of convergence. They prove the following theorem

Theorem 16 (Murty-Sinha, 2009)

Let p be a fixed prime. Let $\{(N, k)\}$ be a pairs of positive integers such that k is even, p is coprime to N. For an interval $[\alpha, \beta] \subset[-2,2]$

$$
\frac{1}{s(N, k)} \sharp\left\{1 \leq i \leq s(N, k): a_{i}(p) \in[\alpha, \beta]\right\}=\int_{\alpha}^{\beta} \mu_{p}+\mathrm{O}\left(\frac{\log p}{\log k N}\right) .
$$

Theorem 17 (Murty-Sinha, 2009)

$$
\begin{gathered}
\#\left\{f \in S^{\prime}(N, k):\left[K_{f}: \mathbb{Q}\right] \leq d\right\} \\
\leq d^{2} \prod_{i=1}^{d}\left(2\binom{d}{i}\left((2 p)^{\frac{k-1}{2}}\right)^{i}+1\right)\left(\frac{3 s(N, k) \log p}{\log k N}+63\left(k N \frac{\log p}{\log k N}\right)\right) .
\end{gathered}
$$

Let $a_{p, i, N}=2 \cos \theta_{p, i, N}$ for some $\theta_{p, i, N} \in[0, \pi]$ and

$$
\theta_{i_{1}, i_{2}, ., i_{r}}=\frac{ \pm \theta_{p, i_{1}, N} \pm \theta_{p, i_{2}, N} \pm \cdots \pm \theta_{p, i_{r}, N}}{2 \pi} .
$$

Theorem 18

Let N be a positive integer and p a prime number coprime to N. For an interval $[\alpha, \beta] \subset[0,1], 1 \leq r \leq s(N, k)$,

$$
\begin{gathered}
\frac{1}{(s(N, k))^{r}} \#\left\{1 \leq i_{1}, i_{2}, \ldots, i_{r} \leq s(N, k):\left\{\theta_{i_{1}, i_{2}, ., i_{r}}\right\} \in[\alpha, \beta]\right\} \\
=\int_{[\alpha, \beta]} \nu_{p}+\mathrm{O}\left(\frac{\log p}{\log k N}\right) \\
\text { where, } \quad \nu_{p}=F(x) * F(x) * \cdots * F(x) d x \\
\text { and } F(x)=4(p+1) \frac{\sin ^{2} 2 \pi x}{\left(p^{\frac{1}{2}}+p^{-\frac{1}{2}}\right)^{2}-\cos ^{2} 2 \pi x} .
\end{gathered}
$$

Here the implied constant is effectively computable.

The following theorem can be deduced from the above theorem

The following theorem can be deduced from the above theorem Theorem 19

For any $\alpha \in[0,1]$,
$\sharp\left\{1 \leq i_{1}, i_{2}, \ldots, i_{r} \leq s(N, k):\left\{\frac{ \pm \theta_{p, i_{1}, N} \pm \theta_{p, i_{2}, N} \pm \cdots \pm \theta_{p, i_{r}, N}}{2 \pi}\right\}=\alpha\right\}$

$$
=O\left((s(N, k))^{r}\left(\frac{\log p}{\log k N}\right)\right)
$$

where the implied constant is effectively computable.

In the above theorem for $r=2$, we have an interesting consequence.

In the above theorem for $r=2$, we have an interesting consequence.
Theorem 20
For any $\alpha \in[0,1]$

$$
\sharp\left\{(i, j):\left\{\frac{ \pm \theta_{p, i, N} \pm \theta_{p . j, N}}{2 \pi}\right\}=\alpha\right\}=\mathrm{O}\left((s(N, k))^{2}\left(\frac{\log p}{\log k N}\right)\right) .
$$

Since, $\sharp\left\{(i, j):\left(\frac{ \pm \theta_{p, i, N} \pm \theta_{p, j, N}}{2 \pi}\right)=0\right\}$

$$
\leq \sharp\left\{(i, j):\left\{\frac{ \pm \theta_{p, i, N} \pm \theta_{p, j, N}}{2 \pi}\right\}=0\right\},
$$

Since, $\sharp\left\{(i, j):\left(\frac{ \pm \theta_{p, i, N} \pm \theta_{p, j, N}}{2 \pi}\right)=0\right\}$

$$
\leq \sharp\left\{(i, j):\left\{\frac{ \pm \theta_{p, i, N} \pm \theta_{p, j, N}}{2 \pi}\right\}=0\right\},
$$

Theorem 21

$$
\sharp\left\{(i, j):\left(\pm \theta_{p, i, N} \pm \theta_{p, j, N}\right)=0\right\}=O\left((s(N, k))^{2}\left(\frac{\log p}{\log k N}\right)\right) .
$$

Since, $\sharp\left\{(i, j):\left(\frac{ \pm \theta_{p, i, N} \pm \theta_{p, j, N}}{2 \pi}\right)=0\right\}$

$$
\leq \sharp\left\{(i, j):\left\{\frac{ \pm \theta_{p, i, N} \pm \theta_{p, j, N}}{2 \pi}\right\}=0\right\},
$$

Theorem 21

$$
\sharp\left\{(i, j):\left(\pm \theta_{p, i, N} \pm \theta_{p . j, N}\right)=0\right\}=\mathrm{O}\left((s(N, k))^{2}\left(\frac{\log p}{\log k N}\right)\right) .
$$

Remark 22

The above result recover main result of Murty-Srinivas.

Remark 23

The above result give some evidence towards Maeda and Tsaknias conjecture.

Remark 23

The above result give some evidence towards Maeda and Tsaknias conjecture.

In 1997, Maeda predicts that for $N=1$,

$$
\prod_{i=1}^{s(N, k)}\left(x-a_{p, i, 1}\right) \text { is irreducible over } \mathbb{Q}
$$

For higher level Tsaknias predicts that the above polynomial is product of bounded number of irreducible polynomials over \mathbb{Q}.

Sketch of proof

For the family $\left\{ \pm \frac{\theta_{\rho, i, N}}{2 \pi}\right\}$,

$$
\sum_{i=1}^{s(N, k)} e\left(\pm m \theta_{p, i, N}\right)=\sum_{i=1}^{s(N, k)} 2 \cos m \theta_{p, i, N}
$$

Sketch of proof

For the family $\left\{ \pm \frac{\theta_{\rho, i, N}}{2 \pi}\right\}$,

$$
\sum_{i=1}^{s(N, k)} e\left(\pm m \theta_{p, i, N}\right)=\sum_{i=1}^{s(N, k)} 2 \cos m \theta_{p, i, N}
$$

For $m=1$,

$$
\sum_{i=1}^{s(N, k)} 2 \cos \theta_{p, i, N}=\operatorname{Tr} T_{p}^{\prime} .
$$

Sketch of proof

For the family $\left\{ \pm \frac{\theta_{\rho, i, N}}{2 \pi}\right\}$,

$$
\sum_{i=1}^{s(N, k)} e\left(\pm m \theta_{p, i, N}\right)=\sum_{i=1}^{s(N, k)} 2 \cos m \theta_{p, i, N}
$$

For $m=1$,

$$
\sum_{i=1}^{s(N, k)} 2 \cos \theta_{p, i, N}=\operatorname{Tr} T_{p}^{\prime} .
$$

For $m \geq 2$,

$$
\sum_{i=1}^{s(N, k)} 2 \cos m \theta_{p, i, N}=\operatorname{Tr} T_{p^{m}}^{\prime}-\operatorname{Tr} T_{p^{m-2}}^{\prime}
$$

- Hilbert modular forms (Arthur trace formula). Y.-K. Lau, Charles Li and Yingnan Wang, Quantitative analysis of the Satake parameters of GL2 representations with prescribed local representations, Acta Arithmetica, 164.4 (2014), 355-379.
- Primitive Maass forms (Kuznetsov trace formula). Y.-K. Lau and Y. Wang, Quantitative version of the joint distribution of eigenvalues of the Hecke operators, J. Number Theory 131 (2011), 2262-2281.
- Certain families of Elliptic curve.
S. J. Miller and M. R. Murty, Effective equidistribution and the Sato-Tate law for families of elliptic curves, J. Number Theory, 131 (2011), 25-44.

Joint Sato-Tate conjecture

Let f_{1} and f_{2} be two Hecke eigenforms such that $f_{1}(p)$ is not a character multiple of $f_{2}(p)$. For any rectangle $I \subset[-2,2]^{2}$,

$$
\begin{aligned}
\frac{1}{\pi(x)} \#\{p & \left.\leq x:\left(a_{p}\left(f_{1}\right), a_{p}\left(f_{2}\right)\right) \in I\right\} \\
& =\int_{I} d \mu \times d \mu
\end{aligned}
$$

where $d \mu$ is the Sato-Tate measure.

Theorem 24 (Murty, —, 2016)

Let f_{1}, f_{2} be normalized Hecke eigenforms of weight k_{1}, k_{2} respectively such that $f_{i}(z)=\sum_{n \geq 1} \frac{a_{n}\left(f_{i}\right)}{n^{s}}$. Suppose that atleast one of f_{1}, f_{2} is not of CM type. Write,

$$
a_{p}\left(f_{i}\right)=b_{p}\left(f_{i}\right) p^{\frac{k-1}{2}} .
$$

If

$$
\limsup _{x \rightarrow \infty} \frac{\#\left\{p \leq x: b_{p}\left(f_{1}\right)=b_{p}\left(f_{2}\right)\right\}}{x / \log x}>0,
$$

then $f_{1}=f_{2} \otimes \chi$ for some Dirichlet character χ.

Remarks

- Since Dirichlet characters are well understood, the above theorem classifies eigenforms under the above restriction.
- This theorem also proves $k_{1}=k_{2}$.
- Rajan (1998) proved the above result when $k_{1}=k_{2}$.
- As a corollary, he obtained the following result Let E_{1} and E_{2} be two elliptic curves over \mathbb{Q}. If

$$
\limsup _{x \rightarrow \infty} \frac{\left\{p: \# E_{1}\left(\mathbb{F}_{p}\right)=\# E_{2}\left(\mathbb{F}_{p}\right)\right\}}{x / \log x}>0
$$

then E_{1} and E_{2} are isogenous after base change.

- Recently, Kulkarni, Patankar and Rajan extend the above result for number fields (using Galois theory, Chebotarev density theorem etc).
- Using modularity theorem, we get the above result over \mathbb{Q}.

Sketch of proof

To prove the above theorem, we need the following proposition.

Proposition 25

Let $0<\delta<\pi$. Let $f_{\delta}(x)$ be the "tent" function defined on $[-\pi, \pi]$ be given by

$$
f_{\delta}(x)= \begin{cases}1-|x| / \delta & \text { if }|x| \leq \delta, \\ 0 & \text { if }|x|>\delta .\end{cases}
$$

Then, for any $M \geq 1$, we have

$$
f_{\delta}(x)=\frac{\delta}{2 \pi}+2 \sum_{n=1}^{M} \frac{1-\cos n \delta}{\pi n^{2} \delta} \cos n x+O\left(\frac{1}{M \delta}\right)
$$

where the implied constant is absolute.

Note that

$$
\begin{aligned}
& \#\left\{p \leq x: \theta_{p}^{(1)}=\theta_{p}^{(2)}\right\} \leq \sum_{p \leq x} f_{\delta}\left(\theta_{p}^{(1)}-\theta_{p}^{(2)}\right)+f_{\delta}\left(\theta_{p}^{(1)}+\theta_{p}^{(2)}\right) \\
& \leq \frac{\delta \pi(x)}{\pi}+4 \sum_{n=1}^{M} \frac{1-\cos n \delta}{\pi n^{2} \delta} \sum_{p \leq x} \cos n \theta_{p}^{(1)} \cos n \theta_{p}^{(2)}+O\left(\frac{\pi(x)}{M \delta}\right)
\end{aligned}
$$

upon using the trigonometric identity

$$
\cos (A+B)+\cos (A-B)=2 \cos A \cos B
$$

and

$$
2 \cos n \theta=\frac{\sin (n+1) \theta}{\sin \theta}-\frac{\sin (n-1) \theta}{\sin \theta}
$$

proof continued

we can rewrite our sum as

$$
\begin{gathered}
\sum_{n=2}^{M} \frac{1-\cos n \delta}{\pi n^{2} \delta} \times \sum_{p \leq x}\left(\left(\frac{\sin (n+1) \theta_{p}^{(1)}}{\sin \theta_{p}^{(1)}}-\frac{\sin (n-1) \theta_{p}^{(1)}}{\sin \theta_{p}^{(1)}}\right)\right. \\
\left.\times\left(\frac{\sin (n+1) \theta_{p}^{(2)}}{\sin \theta_{p}^{(2)}}-\frac{\sin (n-1) \theta_{p}^{(2)}}{\sin \theta_{p}^{(2)}}\right)\right)
\end{gathered}
$$

proof continued

Now to complete the proof it is sufficient to prove the following Proposition.

Proposition 26

If f_{1}, f_{2} are normalized Hecke eigenforms, with at least one not of CM type, such that $f_{1} \neq f_{2} \otimes \chi$ for some Dirichlet character χ, then for any positive integers m, n,

$$
\sum_{p \leq x} \frac{\sin (m+1) \theta_{p}^{(1)}}{\sin \theta_{p}^{(1)}} \frac{\sin (n+1) \theta_{p}^{(2)}}{\sin \theta_{p}^{(2)}}=o(x / \log x)
$$

as x tends to infinity. Here, the summation is over primes.

Joint Sato-Tate distribution for two Hecke eigenforms

Theorem 27
Let f_{1} and f_{2} be two Hecke eigenforms such that $f_{1}(p)$ is not a character multiple of $f_{2}(p)$. For any rectangle $I \subset[-2,2]^{2}$,

$$
\begin{aligned}
\frac{1}{\pi(x)} \#\{p & \left.\leq x:\left(a_{p}\left(f_{1}\right), a_{p}\left(f_{2}\right)\right) \in I\right\} \\
& =\int_{I} d \mu \times d \mu,
\end{aligned}
$$

where $d \mu$ is the Sato-Tate measure.

囯 P．Bohl，Über ein in der Theorie der säkutaren Störungen vorkommendes Problem，J．reine angew．Math．135，189－283．
目 M．Harris，N．Shepherd－Barron and R．Taylor，A family of Calabi－Yau varieties and potential automorphy，Ann．of Math． 171 （2010），no．2，779－813．

国 Y．－K．Lau and Y．Wang，Quantitative version of the joint distribution of eigenvalues of the Hecke operators，J．Number Theory 131 （2011），2262－2281．
葍 P．Deligne，La conjecture de Weil I，IHES Publ．Math．No． 43 （1974），273－307．
回 M．Ram Murty and S．Pujahari，Distinguishing Hecke eigenforms， Proc．Amer．Math．Soc．， 145 （2017），1899－1904．

R M．R．Murty and K．Sinha，Effective equidistribution of eigenvalues of Hecke operators，J．Number Theory， 129 （2009）， no．3，681－714．

R M. R. Murty and K. Srinivas, Some remarks related to Maeda's conjecture, Proc. Amer. Math. Soc. 144 (2016), 4687-4692.
固 S. Pujahari, Distribution of gaps of eigeangles of Hecke operators, (preprint).

回 M. Kulkarni, V. Patankar and C.S. Rajan, Locally potentially equivalent two dimensional Galois representations and Frobenius fields of elliptic curves, J. Number Theory, 164 (2016), 87-102.
© J.-P. Serre, Répartition asymptotique des valeurs propres de l'opérateur de Hecke T_{p}, J. Amer. Math. Soc., 10 (1997), no. 1, 75-102.
R W. Sierpinski, (1910) Sur la valeur asymptotique d'une certaine somme, Bull Intl. Acad. Polonmaise des Sci. et des Lettres (Cracovie) series A, pp. 9-11.
R. Weyl, Über die Gibbs'sche Erscheinung und verwandte Konvergenzphänomene, Rendiconti del Circolo Matematico di Palermo 330:(1910), 377-407.
(A. Wiles, Modular elliptic curves and Fermat's last theorem, Annals of Math., 142 (1995), 443-551.

