Diameters of compact arithmetic hyperbolic surfaces

Raphael S. Steiner
ETH Zürich

17.03.2022

Compact arithmetic hyperbolic surfaces

For the purpose of this talk, a hyperbolic surface will be $\Gamma \backslash \mathbb{H}$ for a discrete subgroup $\Gamma \subset \mathrm{SL}_{2}(\mathbb{R})$, where the action is given by Möbius transformations $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) z=\frac{a z+b}{c z+d}$.

Compact arithmetic hyperbolic surfaces

For the purpose of this talk, a hyperbolic surface will be $\Gamma \backslash \mathbb{H}$ for a discrete subgroup $\Gamma \subset \mathrm{SL}_{2}(\mathbb{R})$, where the action is given by Möbius transformations $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) z=\frac{a z+b}{c z+d}$.

Basic examples for Γ include:

- $\{ \pm I\}$,
- $\mathrm{SL}_{2}(\mathbb{Z})$,
- $\Gamma_{0}(N)=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}) \right\rvert\, c \equiv 0 \bmod (N)\right\}$,
- $\Gamma(N)=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}) \mid \gamma \equiv I \bmod (N)\right\}$.

Compact arithmetic hyperbolic surfaces

For the purpose of this talk, a hyperbolic surface will be $\Gamma \backslash \mathbb{H}$ for a discrete subgroup $\Gamma \subset \mathrm{SL}_{2}(\mathbb{R})$, where the action is given by Möbius transformations $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) z=\frac{a z+b}{c z+d}$.

Basic examples for Γ include:

- $\{ \pm I\}$,
- $\mathrm{SL}_{2}(\mathbb{Z})$,
- $\Gamma_{0}(N)=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}) \right\rvert\, c \equiv 0 \bmod (N)\right\}$,
- $\Gamma(N)=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}) \mid \gamma \equiv I \bmod (N)\right\}$.

Except for the first, these are all examples of arithmetic lattices in $\mathrm{SL}_{2}(\mathbb{R})$. However, they are not co-compact.

Compact arithmetic hyperbolic surfaces

We start with a quaternion algebra $B=\left(\frac{a, b}{\mathbb{Q}}\right), a, b \in \mathbb{Q}^{\times}$, which we assume to be split (indefinite) over the reals, i.e.
$B \otimes \mathbb{R} \cong \operatorname{Mat}_{2 \times 2}(\mathbb{R})(\Leftrightarrow a>0$ or $b>0)$.
Recall $\left(\frac{a, b}{\mathbb{Q}}\right)$ is the \mathbb{Q}-algebra generated by $1, i, j, k$ with the relations

$$
i^{2}=a, \quad j^{2}=b, \quad k=i j=-j i
$$

Compact arithmetic hyperbolic surfaces

We start with a quaternion algebra $B=\left(\frac{a, b}{\mathbb{Q}}\right), a, b \in \mathbb{Q}^{\times}$, which we assume to be split (indefinite) over the reals, i.e.
$B \otimes \mathbb{R} \cong \operatorname{Mat}_{2 \times 2}(\mathbb{R})(\Leftrightarrow a>0$ or $b>0)$.
Recall $\left(\frac{a, b}{\mathbb{Q}}\right)$ is the \mathbb{Q}-algebra generated by $1, i, j, k$ with the relations

$$
i^{2}=a, \quad j^{2}=b, \quad k=i j=-j i
$$

Next, we introduce an integral structure $R \subset B$, an order, that is a lattice which is also closed under multiplication. For us, R will either be maximal or an intersection of two maximal orders, a so-called Eichler order.

Compact arithmetic hyperbolic surfaces

We start with a quaternion algebra $B=\left(\frac{a, b}{\mathbb{Q}}\right), a, b \in \mathbb{Q}^{\times}$, which we assume to be split (indefinite) over the reals, i.e.
$B \otimes \mathbb{R} \cong \operatorname{Mat}_{2 \times 2}(\mathbb{R})(\Leftrightarrow a>0$ or $b>0)$.
Recall $\left(\frac{a, b}{\mathbb{Q}}\right)$ is the \mathbb{Q}-algebra generated by $1, i, j, k$ with the relations

$$
i^{2}=a, \quad j^{2}=b, \quad k=i j=-j i
$$

Next, we introduce an integral structure $R \subset B$, an order, that is a lattice which is also closed under multiplication. For us, R will either be maximal or an intersection of two maximal orders, a so-called Eichler order.

$$
R \subset B \otimes \mathbb{R} \cong \operatorname{Mat}_{2 \times 2}(\mathbb{R})
$$

Compact arithmetic hyperbolic surfaces

We start with a quaternion algebra $B=\left(\frac{a, b}{\mathbb{Q}}\right), a, b \in \mathbb{Q}^{\times}$, which we assume to be split (indefinite) over the reals, i.e.
$B \otimes \mathbb{R} \cong \operatorname{Mat}_{2 \times 2}(\mathbb{R})(\Leftrightarrow a>0$ or $b>0)$.
Recall $\left(\frac{a, b}{\mathbb{Q}}\right)$ is the \mathbb{Q}-algebra generated by $1, i, j, k$ with the relations

$$
i^{2}=a, \quad j^{2}=b, \quad k=i j=-j i
$$

Next, we introduce an integral structure $R \subset B$, an order, that is a lattice which is also closed under multiplication. For us, R will either be maximal or an intersection of two maximal orders, a so-called Eichler order.

$$
\begin{array}{r}
R \subset B \otimes \mathbb{R} \cong \operatorname{Mat}_{2 \times 2}(\mathbb{R}) \\
\Gamma:=R^{1} \subset(B \otimes \mathbb{R})^{1} \cong \mathrm{SL}_{2}(\mathbb{R})
\end{array}
$$

Compact arithmetic hyperbolic surfaces

B an indefinite quaternion algebra over $\mathbb{Q}, R \subset B$ an Eichler order, $\Gamma=R^{1}$ the set of proper units.

Compact arithmetic hyperbolic surfaces

B an indefinite quaternion algebra over $\mathbb{Q}, R \subset B$ an Eichler order, $\Gamma=R^{1}$ the set of proper units.

- $B=\left(\frac{1,1}{\mathbb{Q}}\right) \cong \operatorname{Mat}_{2 \times 2}(\mathbb{Q}), R=\operatorname{Mat}_{2 \times 2}(\mathbb{Z})$ (maximal),

$$
\Gamma=\mathrm{SL}_{2}(\mathbb{Z})
$$

- $B=\left(\frac{7,5}{\mathbb{Q}}\right), R=\left\langle 1, \frac{1+j}{2}, i, \frac{1+i+j+k}{2}\right\rangle_{\mathbb{Z}}$ (maximal), $\Gamma=R^{1}$,
- $B=\left(\frac{77,-1}{\mathbb{Q}}\right), R=\left\langle 1, \frac{1+i}{2}, j, \frac{j+k}{2}\right\rangle_{\mathbb{Z}}$ (maximal), $\Gamma=R^{1}$.

Compact arithmetic hyperbolic surfaces

B an indefinite quaternion algebra over $\mathbb{Q}, R \subset B$ an Eichler order, $\Gamma=R^{1}$ the set of proper units.

- $B=\left(\frac{1,1}{\mathbb{Q}}\right) \cong \operatorname{Mat}_{2 \times 2}(\mathbb{Q}), R=\operatorname{Mat}_{2 \times 2}(\mathbb{Z})$ (maximal),

$$
\Gamma=\mathrm{SL}_{2}(\mathbb{Z})
$$

- $B=\left(\frac{7,5}{\mathbb{Q}}\right), R=\left\langle 1, \frac{1+j}{2}, i, \frac{1+i+j+k}{2}\right\rangle_{\mathbb{Z}}$ (maximal), $\Gamma=R^{1}$,
- $B=\left(\frac{77,-1}{\mathbb{Q}}\right), R=\left\langle 1, \frac{1+i}{2}, j, \frac{j+k}{2}\right\rangle_{\mathbb{Z}}$ (maximal), $\Gamma=R^{1}$.

The discriminant \mathfrak{D} of B is the product of the (finite) primes p for which $B \otimes \mathbb{Q}_{p} \neq \operatorname{Mat}_{2 \times 2}\left(\mathbb{Q}_{p}\right)$.

Compact arithmetic hyperbolic surfaces

B an indefinite quaternion algebra over $\mathbb{Q}, R \subset B$ an Eichler order, $\Gamma=R^{1}$ the set of proper units.

- $B=\left(\frac{1,1}{\mathbb{Q}}\right) \cong \operatorname{Mat}_{2 \times 2}(\mathbb{Q}), R=\operatorname{Mat}_{2 \times 2}(\mathbb{Z})$ (maximal),

$$
\Gamma=\mathrm{SL}_{2}(\mathbb{Z})
$$

- $B=\left(\frac{7,5}{\mathbb{Q}}\right), R=\left\langle 1, \frac{1+j}{2}, i, \frac{1+i+j+k}{2}\right\rangle_{\mathbb{Z}}$ (maximal), $\Gamma=R^{1}$,
- $B=\left(\frac{77,-1}{\mathbb{Q}}\right), R=\left\langle 1, \frac{1+i}{2}, j, \frac{j+k}{2}\right\rangle_{\mathbb{Z}}$ (maximal), $\Gamma=R^{1}$.

The discriminant \mathfrak{D} of B is the product of the (finite) primes p for which $B \otimes \mathbb{Q}_{p} \neq \operatorname{Mat}_{2 \times 2}\left(\mathbb{Q}_{p}\right)$. The level \mathfrak{N} of an Eichler order R is a measurement of the distance between the two maximal orders R_{1}, R_{2} such that $R=R_{1} \cap R_{2}$.

Compact arithmetic hyperbolic surfaces

B an indefinite quaternion algebra over $\mathbb{Q}, R \subset B$ an Eichler order, $\Gamma=R^{1}$ the set of proper units.

- $B=\left(\frac{1,1}{\mathbb{Q}}\right) \cong \operatorname{Mat}_{2 \times 2}(\mathbb{Q}), R=\operatorname{Mat}_{2 \times 2}(\mathbb{Z})$ (maximal),

$$
\Gamma=\mathrm{SL}_{2}(\mathbb{Z}), \mathfrak{D}=\mathfrak{N}=1
$$

- $B=\left(\frac{7,5}{\mathbb{Q}}\right), R=\left\langle 1, \frac{1+j}{2}, i, \frac{1+i+j+k}{2}\right\rangle_{\mathbb{Z}}$ (maximal), $\Gamma=R^{1}$, $\mathfrak{D}=35, \mathfrak{N}=1$,
- $B=\left(\frac{77,-1}{\mathbb{Q}}\right), R=\left\langle 1, \frac{1+i}{2}, j, \frac{j+k}{2}\right\rangle_{\mathbb{Z}}$ (maximal), $\Gamma=R^{1}$,

$$
\mathfrak{D}=77, \mathfrak{N}=1
$$

The discriminant \mathfrak{D} of B is the product of the (finite) primes p for which $B \otimes \mathbb{Q}_{p} \neq \operatorname{Mat}_{2 \times 2}\left(\mathbb{Q}_{p}\right)$. The level \mathfrak{N} of an Eichler order R is a measurement of the distance between the two maximal orders R_{1}, R_{2} such that $R=R_{1} \cap R_{2}$.

Compact arithmetic hyperbolic surfaces

B an indefinite quaternion algebra over $\mathbb{Q}, R \subset B$ an Eichler order, $\Gamma=R^{1}$ the set of proper units.

- $B=\left(\frac{1,1}{\mathbb{Q}}\right) \cong \operatorname{Mat}_{2 \times 2}(\mathbb{Q}), R=\operatorname{Mat}_{2 \times 2}(\mathbb{Z})$ (maximal),

$$
\Gamma=\mathrm{SL}_{2}(\mathbb{Z}), \mathfrak{D}=\mathfrak{N}=1
$$

- $B=\left(\frac{7,5}{\mathbb{Q}}\right), R=\left\langle 1, \frac{1+j}{2}, i, \frac{1+i+j+k}{2}\right\rangle_{\mathbb{Z}}$ (maximal), $\Gamma=R^{1}$, $\mathfrak{D}=35, \mathfrak{N}=1$,
- $B=\left(\frac{77,-1}{\mathbb{Q}}\right), R=\left\langle 1, \frac{1+i}{2}, j, \frac{j+k}{2}\right\rangle_{\mathbb{Z}}$ (maximal), $\Gamma=R^{1}$, $\mathfrak{D}=77, \mathfrak{N}=1$.

The discriminant \mathfrak{D} of B is the product of the (finite) primes p for which $B \otimes \mathbb{Q}_{p} \neq \operatorname{Mat}_{2 \times 2}\left(\mathbb{Q}_{p}\right)$. The level \mathfrak{N} of an Eichler order R is a measurement of the distance between the two maximal orders R_{1}, R_{2} such that $R=R_{1} \cap R_{2}$.

The volume of $\Gamma \backslash \mathbb{H}$ is $V=(\mathfrak{D N})^{1+o(1)}$ and Γ is co-compact iff $\mathfrak{D}>1$.

Compact arithmetic hyperbolic surfaces

Ford fundamental domains of the previous co-compact arithmetic lattices after a Cayley transformation $\mathbb{H} \rightarrow \mathcal{D}$.

Figure 13: $F=$ Q. $\mathcal{D}=35, \mu(U)=25.1327412287$.

Figure 31: $F=\mathbb{Q}, \mathcal{D}=77, \mu(U)=62.8318530718$.

These images are a courtesy of James Rickards.

- Bounding the size of generators of Γ,

Why consider diameters?

- Bounding the size of generators of Γ,
- Giving a runtime complexity for computing these domains, generators, reduced word problem w.r.t. these generators, computing intersection numbers of geodesics,... (work by Voight, Rickards, etc.),

Why consider diameters?

- Bounding the size of generators of Γ,
- Giving a runtime complexity for computing these domains, generators, reduced word problem w.r.t. these generators, computing intersection numbers of geodesics,... (work by Voight, Rickards, etc.),
- Indefinite analogue of the LPS-graphs, a type of Ramanujan graphs which admit small diameter due to the large spectral gap. (work by Lubotzky, Phillips, Sarnak, Golubev, Kamber, etc.)

Prior and new results

- Chu-Li: $\Gamma \backslash \mathbb{H}$ of volume V as before has diameter bounded by $(2.56+o(1)) \log (V)$,

Prior and new results

- Chu-Li: $\Gamma \backslash \mathbb{H}$ of volume V as before has diameter bounded by $(2.56+o(1)) \log (V)$,
- Golubev-Kamber: $\Gamma \backslash \mathbb{H}$ of volume V with $\lambda_{1} \geq \frac{1}{4}$ has almost diameter bounded by $(1+o(1)) \log (V)$,
- Chu-Li: $\Gamma \backslash \mathbb{H}$ of volume V as before has diameter bounded by $(2.56+o(1)) \log (V)$,
- Golubev-Kamber: $\Gamma \backslash \mathbb{H}$ of volume V with $\lambda_{1} \geq \frac{1}{4}$ has almost diameter bounded by $(1+o(1)) \log (V)$,
- Golubev-Kamber: certain normal arithmetic covers $\Gamma_{2} \backslash \mathbb{H}$ over $\Gamma_{1} \backslash \mathbb{H}$ have almost diameter bounded by $(1+o(1)) \log \left(\left[\Gamma_{1}: \Gamma_{2}\right]\right)$.

Prior and new results

- Chu-Li: $\Gamma \backslash \mathbb{H}$ of volume V as before has diameter bounded by $(2.56+o(1)) \log (V)$,
- Golubev-Kamber: $\Gamma \backslash \mathbb{H}$ of volume V with $\lambda_{1} \geq \frac{1}{4}$ has almost diameter bounded by $(1+o(1)) \log (V)$,
- Golubev-Kamber: certain normal arithmetic covers $\Gamma_{2} \backslash \mathbb{H}$ over $\Gamma_{1} \backslash \mathbb{H}$ have almost diameter bounded by $(1+o(1)) \log \left(\left[\Gamma_{1}: \Gamma_{2}\right]\right)$.

Theorem (S.)

Let Γ be an arithmetic co-compact lattice stemming from an Eichler order of square-free level in an indefinite quaternion algebra over \mathbb{Q}. Then, for every point w on the hyperbolic surface $\Gamma \backslash \mathbb{H}$ of volume V, almost every point $z \in \Gamma \backslash \mathbb{H}$ satisfies

$$
\min _{\gamma \in \Gamma} d(\gamma z, w) \leq(1+o(1)) \log (V)
$$

The proof builds on the approach by Golubev-Kamber. Let B_{z} be a smooth ball centred at z of small enough radius such that it behaves like a euclidean ball.

The proof builds on the approach by Golubev-Kamber. Let B_{z} be a smooth ball centred at z of small enough radius such that it behaves like a euclidean ball.
Let A_{T} be some operator that dissipates the mass at unit speed evaluated at time T. (Think geodesic flow projected down to the surface.)

The proof builds on the approach by Golubev-Kamber. Let B_{z} be a smooth ball centred at z of small enough radius such that it behaves like a euclidean ball.
Let A_{T} be some operator that dissipates the mass at unit speed evaluated at time T. (Think geodesic flow projected down to the surface.)
Then, it satisfies to show for $T_{0}=(1+\epsilon) \log (V)$, that

$$
\begin{aligned}
\nu_{\text {prob }}\left(w \in \Gamma \backslash \mathbb{H} \mid A_{T_{0}} B_{z}(w)\right. & =0) \\
& \ll V^{2}\left\|A_{T_{0}} B_{z}-\left\langle B_{z}, 1\right\rangle 1\right\|_{2}^{2}=o(1)
\end{aligned}
$$

$$
\begin{aligned}
& V^{2}\left\|A_{T_{0}} B_{z}-\left\langle B_{z}, 1\right\rangle 1\right\|_{2}^{2} \\
& \quad \ll T_{0}^{2} \sum_{0<\lambda_{j} \leq \frac{1}{4}}\left(e^{-\frac{T_{0}}{2}}\right)^{2\left(1-\sqrt{1-4 \lambda_{j}}\right)}\left|u_{j}(z)\right|^{2}+T_{0}^{2} e^{-T_{0}} V^{2}\left\|B_{z}\right\|_{2}^{2} .
\end{aligned}
$$

$$
\begin{aligned}
& V^{2}\left\|A_{T_{0}} B_{z}-\left\langle B_{z}, 1\right\rangle 1\right\|_{2}^{2} \\
& \quad \ll T_{0}^{2} \sum_{0<\lambda_{j} \leq \frac{1}{4}}\left(e^{-\frac{T_{0}}{2}}\right)^{2\left(1-\sqrt{1-4 \lambda_{j}}\right)}\left|u_{j}(z)\right|^{2}+T_{0}^{2} e^{-T_{0}} V^{2}\left\|B_{z}\right\|_{2}^{2} .
\end{aligned}
$$

Use $\left\|B_{z}\right\|_{2}^{2} \ll V^{-1}$, Cauchy-Schwarz to split off the exceptional Maaß forms u_{j}, a strong density estimate for one of the factors, and a sharp estimate on the fourth moment of exceptional Maaß form by Khayutin-Nelson-S. (soon to appear) for the other factor.

Thank you for listening!

