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Let E be an elliptic curve over the finite field Fp and E (Fp) be the
set of points on E with coordinates in Fp. The group E (Fp) is
obviously a finite group. Indeed, it clearly has no more than 2p + 1
points.

Theorem (Hasse, 1922)

Let E be an elliptic curve

E : y2 = x3 + ax + b

with a, b ∈ Fp. Then |#E (Fp)− p − 1| ≤ 2
√
p.
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For an elliptic curve E defined over the finite field Fpr with pr

elements (p prime, r ∈ N), the trace of Frobenius is given by

tr(E ) = trpr (E ) := pr + 1−#E (Fpr ) .

Here E (Fpr ) is the set of points on the elliptic curve over the finite
field Fpr .
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Sato-Tate conjecture

(Mikio Sato) (John Tate)
(Source: wikipedia.org)

Taking −1 ≤ a ≤ b ≤ 1 and a fixed elliptic curve E over Q, it was
independently conjectured by Sato and Tate that if E does not
have complex multiplication, then

lim
N→∞

#{p ≤ N : 2a
√
p ≤ tr(E ) ≤ 2b

√
p}

#{p ≤ N}
=

2

π

∫ b

a

√
1− x2dx .
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(E : y2 − y = x3 − x2 for p < 109)
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In a series of papers by Richard Taylor, Michael Harris, Nick
Shepherd-Barron, David Geraghty, Laurent Clozel and Tom
Barnet-Lamb, this conjecture is now a theorem.

(B.J. Birch) (Y. Ihara)
(Source: wikipedia.org)

Theorem (Birch; 1968)

{ trp(E)√
p } satisfy the Sato-Tate law in [−2, 2] as p → ∞.

Sudhir Pujahari Sato-Tate conjecture in arithmetic progressions...



In a series of papers by Richard Taylor, Michael Harris, Nick
Shepherd-Barron, David Geraghty, Laurent Clozel and Tom
Barnet-Lamb, this conjecture is now a theorem.

(B.J. Birch) (Y. Ihara)
(Source: wikipedia.org)

Theorem (Birch; 1968)

{ trp(E)√
p } satisfy the Sato-Tate law in [−2, 2] as p → ∞.

Sudhir Pujahari Sato-Tate conjecture in arithmetic progressions...



In other words Birch showed that∑
E

(
trp(E )√

p

)2k

∼ Ckp
k as p → ∞,

where Ck := 1
k+1

(2k
k

)
is the k-th Catalan number.

Extension/Varient of such results are done by
Katz-Sarnak; Yoshida; Deligne; Brock-Granville; Baier-Zhao;
Banks-Shparlinski; · · · · · · · · ·
For m ∈ Z and M ∈ N, we restrict to the set

Em,M,pr := {E/Fpr : tr(E ) ≡ m (mod M)}.
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Understanding the distribution of the numbers tr(E ) in this
arithmetic progression is closely related to investigating the
weighted κ-th moment with respect to tr(E ) (for κ ∈ N0)

Sκ,m,M(pr ) :=
∑
E/Fpr

tr(E)≡m (mod M)

tr(E )κ

#AutFpr
(E )

=
∑

E∈Em,M,pr

tr(E )κ

#AutFpr
(E )

.
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Distribution of moments of trace of Frobenius in arithmetic
progressions.

(K. Bringmann) (B. Kane) (S. Pujahari)
(Source: webpage)
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Theorem

Let m ∈ Z, M ∈ N and ε > 0 be given. Let p > 3 be a prime for
which p ∤ gcd(m,M) and k ∈ N. As r → ∞, we have

S2k,m,M (pr )

prkSm,M (pr )
= Ck + Ok,p,M,ε

(
p(−

1
2
+ε)r

)
,

where Ck is the k-th Catlan number.

Sudhir Pujahari Sato-Tate conjecture in arithmetic progressions...



Theorem

Let m ∈ Z, M ∈ N and ε > 0 be given.
For primes p → ∞, we have

S2k,m,M(p)

pkSm,M(p)
= Ck + Ok,M,ε

(
p−

1
2
+ε

)
,

S2k,m,M (pr )

prkSm,M (pr )
= Ck + Ok,M,r ,ε

(
p−1+ε

)
(r ≥ 2).
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(B.J. Birch) (Y. Ihara)
(Source: wikipedia.org)

For M = 1, these sums were studied by Birch and implicitly appear
in the work of Ihara. They obtained a formula for these sums in
terms of the trace of Hecke operators that yields the asymptotic
like above.
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(Wouter Castryck) (Hendrik Hubrechts)
(Source: wikipedia.org)

They studied the distribution of {trq(E ) ≡ t (mod N)}, N ∈ N
and t ∈ {1, 2, . . .N − 1}.
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(N. Kaplan ) (I. Petrow)
(Source: webpage)

For M = 2, formulas for S2k,m,2 were obtained by Kaplan and
Petrow.

Sudhir Pujahari Sato-Tate conjecture in arithmetic progressions...



A special case of above theorem yields a result about elliptic curves
with M-torsion points (M ∈ N)

E [M] := {P ∈ E : ord(P) | M}.

Here ord(P) means the order of the point under the group law
defined on elliptic curves.

We denote the subset of torsion points
of precise order M by

E ∗[M] := {P ∈ E : ord(P) = M}

and define

S∗
κ,M(pr ) :=

∑
E/Fpr

E∗[M] ̸=∅

tr(E )κ

#AutFpr
(E )

.
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Corollary

Let M be a square free integer.

1 As p → ∞, we have

S∗
2k,M (p)

pkS∗
M (p)

= Ck + Ok,Mε

(
p−

1
2
+ε

)
,

S∗
2k,M (pr )

prkS∗
M (pr )

= Ck + Ok,M,r ,ε

(
p−1+ε

)
(r ≥ 2).

2 If p > 3 is a prime we have, as r → ∞

S∗
2k,M (pr )

prkS∗
M (pr )

= Ck + Ok,p,M,ε

(
p(−

1
2
+ε)r

)
.
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Now we consider moments of sums of Hurwitz class numbers that
are of independent interest. Let h(d) denote the class number.

Let H(n) :=
∑
d2|n

n/d2≡0,1 (mod 4)

hw (n/d
2) be the nth Hurwitz class

number, where

hw (d) :=


h(d)/3 if d = −3;
h(d)/2 if d = −4;
h(d) else.

Let
H(τ) :=

∑
n∈Z

H(n)qn

be the generating function for the Hurwitz class numbers.
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(D. Zagier)
(Source: wikipedia.org)

Theorem (Zagier; 1976)

H is a Mock modular forms of weight 3
2 .

Sums of moments of these Hurwitz class numbers analogous to
Sκ,m,M are given by

Hκ,m,M(n) :=
∑
t∈Z

t≡m (mod M)

tκH
(
4n − t2

)
.
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Sums of this type have occurred throughout the literature and
satisfy many nice identities.

(M. Eichler)
(Source: wikipedia.org)

Theorem (Eichler; 1956)

For M = 1, κ = 0, and n = p prime we have the famous identity

H0,1(p) = 2p.
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Theorem

Let m,M, k ∈ N be given. As n → ∞, we have

H2k,m,M(n)

nkHm,M(n)
= Ck + Ok,M,ε

(
n−

1
2
+ε

)
.
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Let
Epr ,t := {E/Fpr : tr(E ) = t}

and

NA(p
r ; t) :=

∑
E∈Epr ,t

1

#AutFpr
(E )

.

Then, for a prime p > 3 and r ∈ N we have

2NA (pr ; t) =



H
(
4pr − t2

)
if t2 < 4pr , p ∤ t,

H(4p) if t = 0 and r is odd,
1
2

(
1−

(
−1
p

))
if t = 0 and r is even,

1
3

(
1−

(
−3
p

))
if t2 = pr ,

1
12 (p − 1) if t2 = 4pr ,

0 otherwise.
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Theorem

Let k ∈ N, m ∈ Z, and M ∈ N be given.

(1) For a fixed prime p > 3, as r → ∞ we have

S2k+1,m,M(pr ) = Ok,M,ε

(
p(k+1+ε)r

)
.

(2) For r ∈ N fixed, as p → ∞ we have

S2k+1,m,M(pr ) = Ok,M,ε

(
p(k+1+ε)r

)
.
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Theorem

Let k ∈ N0 be given. Then

H2k+1,m,M(n)

nk+
1
2Hm,M(n)

= Ok,M,ε

(
n−

1
2
+ε

)
, H2k+1,m,M(n) = Ok,M,ε

(
nk+1+ε

)
.

Theorem

Let m ∈ Z and M ∈ N be given. The xE for E ∈ Em,M(pr ) are
equidistributed with respect to the Sato–Tate measure.
Specifically, we have

lim
p→∞

PrAut

(
a ≤ trq(E )√

q
≤ b : E ∈ Em,M(pr )

)
=

∫ b

a
µ(x)dx .
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Sketch of proof for even moments:

Let Gk,m,M(n) :=
∑

t≡±m (mod M)

p2k(t, n)H
(
4n − t2

)
, where

p2k(t, n) denotes the (2k)-th coefficients in the Taylor expansion
of (1− tX + nX 2)−1.

The n-th Fourier coefficient of [H, θm,M ]k |U4 equals(
(2k)!
2·k! Gk,m,M(n)

)
.

For m ∈ Z and k,M ∈ N, we have
H2k,m,M(n) = k!

(2k)!Gk,m,M(n)

−
∑k

µ=1(−1)µ (2k−µ)!
µ!(2k−2µ)!n

µH2k−2µ,m,M(n).
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We argue by induction.

Since C0 = 1, the claim holds trivially for k = 0.

For k ≥ 1,

Gk,m,M(n) +
1

22k · k!
λ2k+1,m,M(4n)

is the n-th coefficient of a weight 2k + 2 cusp form, where

λℓ,m,M(n) := 2
∑
±

∑
t>s≥0
t2−s2=n

t≡±m (mod M)

(t − s)ℓ.
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continued...

λℓ,m,M(n) ≤ n
ℓ
2λm,M(n) ≪ε n

ℓ
2
+ε.

By Deligne’s bound it thus may be bound against

Ok,M,ε(n
k+ 1

2
+ε). The implied constant in the error term a

priori depends on m as well, but by taking the maximum over
all of the choices of m (mod M).

Gk,m,M(n) ≪k,M,ε n
k+ 1

2
+ε.
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