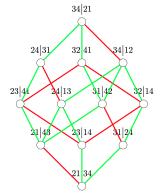
Fibers of Projected Richardson Varieties

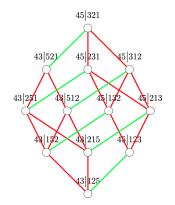
Travis Grigsby

Oklahoma State University

May 22, 2024

Introduction

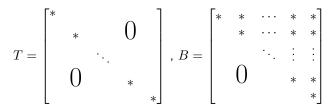




Introduction

Background and Notation:

 $G = SL_n(\mathbb{C})$ (G a reductive algebraic group over \mathbb{C} .)



Define the Weyl group $W = \operatorname{Norm}(T)/T \cong S_n = \{ \text{ Permutation matrices } \}.$

Right action by B on G preserves the span of the iterative spans of column vectors of matrices.

$$G/B = \{V_{\bullet} := V_1 \subset V_2 \subset \cdots \subset V_{n-1} \subset \mathbb{C}^n : \dim V_i = i\}$$

G/B is called the **flag variety**, our ambient space.

Introduction

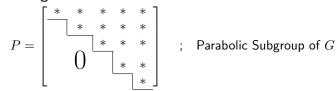
Background and Notation:

Let s_i denote the permutation swapping the i^{th} and $(i+1)^{\text{th}}$ columns of a matrix.

 $W=S_n=\langle s_i
angle$; generated by simple reflections

$$G/B = \bigsqcup_{w \in S_n} BwB/B$$
 ; the Bruhat decomposition

Background and Notation:



Only some of the spans of columns are preserved.

 \implies span of 1st two columns, and span of 1st four columns are preserved.

$$G/P = \{V_2 \subset V_4 \subset \mathbb{C}^5 : \operatorname{dim} V_2 = 2, \operatorname{dim} V_4 = 4\}$$

G/P is a partial flag variety.

Projection Map:

There is a natural map, $\pi: G/B \longrightarrow G/P$ via $gB \longmapsto gP$. Intuitively we forget some of the flag.

$$\pi: V_1 \subset V_2 \subset V_3 \subset V_4 \subset \mathbb{C}^5 \quad \longmapsto \quad V_2 \subset V_4 \subset \mathbb{C}^5$$

Permutations:

The elements of W are words in the generating set $\{s_1, s_2, ..., s_k\}$

Example: $W = S_3$

$$w = 231 = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = s_1 s_2$$

The **length** of w is l(w) = 2.

W has a partial order given by $v \le u$ if and only if $\overline{BvB} \subset \overline{BuB}$ or equivalently, if some reduced word of v is a subword of u.

Example:

 $u = s_1 s_2 s_3 s_4$ happens to be reduced. $v = s_2 s_4$ is a subword of $s_1 s_2 s_3 s_4$, therefore $v \leq u$.

Quotients on Permutations:

Choose $J \subset \{s_1, ..., s_{n-1}\}$, and let $W_P = \langle s_i | s_i \in J \rangle$. The quotient W/W_P can be described using the one-line notation of a permutation.

Example:

 $G = SL_5(\mathbb{C}), \quad W = \langle s_1, s_2, s_3, s_4 \rangle, \quad W_P = \langle s_1, s_3 \rangle, \quad w = 23415$

Elements of W/W_P are determined by placing bars at positions 2 and 4 in one-line notation, because s_1 and s_2 were excluded from W_P .

$$w = 23415 \longrightarrow 23|41|5$$

 $wW_P = \{23|14|5, 23|41|5, 32|14|5, 32|41|5\}$ (full coset)

We can always choose a minimal length representative $w^P = 23|14|5$.

Parabolic Decomposition: $w = w^P \cdot w_P = (23|14|5) \cdot (12|43|5)$

Schubert Varieties:

Given
$$u \in W$$
, define the Schubert variety $X_u = \overline{BuB} = \bigsqcup_{w \leq u} BwB$.

Let w_0 be the unique maximal length element of W. The opposite Borel $B^- = w_0 B w_0$.

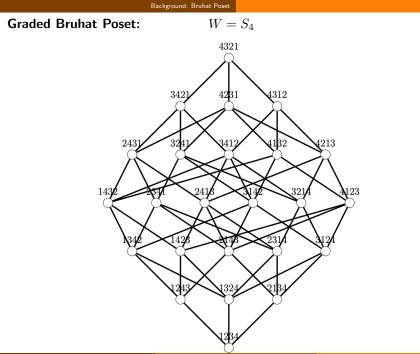
Given $v \in W$, define the opposite Schubert variety $X^v = \overline{B^- vB} = \bigsqcup_{v \le w} B^- wB$.

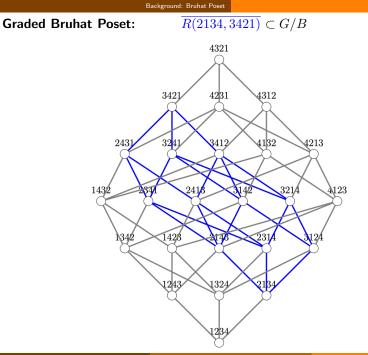
Richardson Varieties:

The Richardson variety $\overline{R(v,u)} = X_u \cap X^v = X_u \cap w_0 X_{w_0 v}$.

R(v,u) is nonempty if and only if $v\leq u,$ and if it is nonempty then

$$\dim \overline{R(v,u)} = l(u) - l(v).$$





History

Historical Context:

- In 2012 Knutson-Lam-Speyer classified projected Richardson varieties using *P*-Bruhat order.
 - Projected Richardson varieties are normal and Cohen-Macaulay, and have rational resolutions

•
$$\pi\left(\overline{R(v,u)}\right) = \pi\left(\overline{R(y,x)}\right)$$
 if and only if $[v,u] [y,x]$ with respect to the *P*-Bruhat order.

- In 2017 Richmond-Slofstra studied $\pi: G/B \longrightarrow G/P$ in the context of describing smooth and rationally smooth Schubert varieties.
 - For any finite Lie Type, a Schubert variety is smooth if and only if it is an iterated fibre bundle of Grassmannians.
 - They showed $\pi: X_u \longrightarrow G/P$ has equidimensional fibers if and only if $u = u^P u_P$ is a BP-decomposition.

(I generalize this result to Richardson varieties.)

History

Historical Context:

- In 2012 Billey-Coskun studied the singularities of projected Richardson varieties in Lie Type A. They showed that the singular locus of $\pi(R_v^u)$ denoted $\pi(R_v^u)^{sing}$, is the union of $(R_v^u)^{sing}$ with the points $gP \in \pi(R_v^u)$ with positive dimensional fibers.
- In 2022 Buch-Chaput-Mihalcea-Perrin studied fibers of projected Richardson varieties with an aim towards applications in quantum K-Theory. They defined a relaxation of transverse intersections called semitransverse intersections, and showed the generic fibers of projected Richardson varieties are a semitransverse intersection of a pair of Schubert varieties.

Transition to Combinatorics:

The geometry of restricting

$$\pi: G/B \longrightarrow G/P$$

to a Richardson variety is captured by the graded Bruhat poset and W/W_P .

Geometric Question: Given $\pi: \overline{R(b,a)} \longrightarrow G/P$, when are the fibers equidimensional?

Geometric Answer:

Theorem (G.)

Let $\pi: \overline{R(b,a)} \longrightarrow G/P$ be the projection map to a partial flag variety, and let k equal the dimension of a generic fiber of π . The following are equivalent.

- 1. The fibers of π are equidimensional.
- 2. For each $\overline{R(v,u)} \subset \overline{R(b,a)}$ the generic fiber of $\pi|_{\overline{R(v,u)}}$ has dimension at most k.

Geometric Question: Given $\pi: \overline{R(b,a)} \longrightarrow G/P$, when are the fibers equidimensional?

Combinatorial Answer:

Theorem (G.)

Let $\pi: \overline{R(b,a)} \longrightarrow G/P$. Let w_0 be the longest element of the Weyl group W associated to G/B. For $x \in W$ let $x^P x_P$ denotes the parabolic decomposition of x with respect to W/W_P , and $x \star y$ denote the Demazure product of x with y.Let F(b,a) equal the dimension of a generic fiber of π .

$$F(b,a) = l(a_P) + l(w_{0P}b_P) - l(a_P \star (w_{0P}b_P)^{-1})$$

F(v, u) calculates the generic fiber dimension of the restriction $\pi \Big|_{\overline{R(v, u)}}$.

Geometric Question: Given $\pi: \overline{R(b,a)} \longrightarrow G/P$, when are the fibers equidimensional?

Combinatorial Answer:

Theorem (G.)

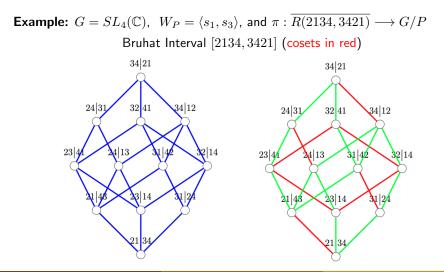
Let $\pi : \overline{R(b,a)} \longrightarrow G/P$ be the projection map to a partial flag variety, and let k equal the dimension of a generic fiber of π . The following are equivalent.

- 1. The fibers of π are equidimensional.
- 2. $F(v,u) \leq F(b,a)$ for each $[v,u] \subset [b,a]$.

Recasting the Problem

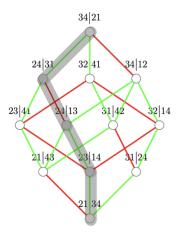
Saturated Chains:

Color the graded Bruhat poset relative to W/W_P . Elements in the same coset share a red edge, the other edges are green.



Saturated Chains:

Consider saturated chains on the colored Bruhat poset. The **weight** of a saturated chain is the number of red edges it contains.



A chain with weight 1.

Proposition (G.)

F(v, u) equals the minimum weight of a saturated chain in [v, u].

Proposition (G.)

Let C be a minimal weight chain in $[v, u] \subset [b, a]$. There exists a relative coset $xW_P \cap [b, a]$ with minimal weight chain D satisfying

weight $\mathcal{C} \leq$ weight \mathcal{D}

When does $\pi: \overline{R(b,a)} \longrightarrow G/P$ have equidimensional fibers?

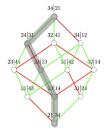
Summary:

• The generic fibers of π restricted to subvarieties each have smaller dimension than the generic fiber of $\pi.$

 $F(v,u) \leq F(b,a) \text{ for all } [v,u] \subset [b,a]$

• Generic fibers of $\pi\big|_{\overline{R(v,u)}}$ have dimension equal to the minimal weight chain on [v,u].

The weight of a chain comes from "coset steps".



• Focus on Cosets: Minimal weight chains in coset subintervals [v, u] should take fewer "coset steps" than minimal weight chains in [b, a].

Example 1:

$$G = \mathsf{SL}_4(\mathbb{C}) \qquad W = S_4 = \langle s_1, s_2, s_3 \rangle$$

$$G/B = \{V_1 \subset V_2 \subset V_3 \subset \mathbb{C}^4 : \dim V_k = k\}$$

Parabolic Subgroup:

Let $W_2 = \langle s_1, s_3 \rangle$ then $P_2 = BW_2B$ is a parabolic subgroup.

$$G/P_2 = \mathbf{Gr}_2(\mathbb{C}^4) = \{ V \subset \mathbb{C}^4 : \dim V = 2 \}$$

Projection Map:

The projection map $\pi:G/B\longrightarrow {\rm Gr}_2({\mathbb C}^4)$ is defined by

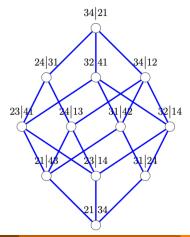
$$V_1 \subset V_2 \subset V_3 \subset \mathbb{C}^4 \qquad \longmapsto \qquad V_2$$

Example 1:

Are the fibers of $\pi: \overline{R(2134, 3421)} \longrightarrow \mathbf{Gr}_2(\mathbb{C}^4)$ equidimensional?

The Combinatorial Picture:

Combinatorially $\overline{R(2134, 3421)}$ is represented by the Bruhat Interval [2134, 3421].



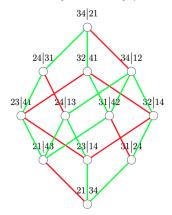
Example 1:

Are the fibers of $\pi: \overline{R(2134, 3421)} \longrightarrow \mathbf{Gr}_2(\mathbb{C}^4)$ equidimensional?

The Combinatorial Picture:

For projection we look at the cosets of W/W_2 in the interval.

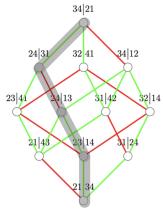
Bruhat Interval [2134, 3421] (cosets in red)



Example 1:

Are the fibers of $\pi: \overline{R(2134, 3421)} \longrightarrow \operatorname{Gr}_2(\mathbb{C}^4)$ equidimensional?

The Combinatorial Picture:



The least number of "coset steps" a saturated chain takes is one.

The generic fibers of $\pi: \overline{R(2134, 3421)} \longrightarrow \mathbf{Gr}_2(\mathbb{C}^4)$ are 1-dimensional.

Example 1:

Are the fibers of $\pi: \overline{R(2134, 3421)} \longrightarrow \operatorname{Gr}_2(\mathbb{C}^4)$ equidimensional?

The Combinatorial Picture:

The saturated chains in the subinterval $\left[2314, 3241\right]$ must take two "coset" steps.

The generic fibers of the restriction $\pi: \overline{R(2314, 3241)} \longrightarrow \mathbf{Gr}_2(\mathbb{C}^4)$ are 2-dimensional.

The *T*-fixed point uB with u = 2314 is generic for the restriction and **Fiber**(uP) is $\mathbb{P} \times \mathbb{P}$, which is 2-dimensional.

34 21 32 41 24 31 34|1223|44|1331|4232|1431|2423|1421|4 $21 3^{4}$

THE FIBERS ARE NOT EQUIDIMENSIONAL.

Example 2:

$$G = \mathsf{SL}_5(\mathbb{C}) \qquad W = S_5 = \langle s_1, s_2, s_3, s_4 \rangle$$

$$G/B = \{V_1 \subset V_2 \subset V_3 \subset V_4 \subset \mathbb{C}^5 : \operatorname{dim} V_k = k\}$$

Parabolic Subgroup:

Let $W_2 = \langle s_1, s_3, s_4 \rangle$ then $P_2 = BW_2B$ is a parabolic subgroup.

$$G/P_2 = \mathbf{Gr}_2(\mathbb{C}^5) = \{V \subset \mathbb{C}^5 : \dim V = 2\}$$

Projection Map:

The projection map $\pi:G/B\longrightarrow {\rm Gr}_2({\mathbb C}^5)$ is defined by

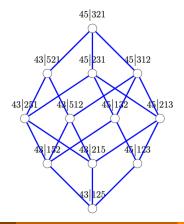
$$V_1 \subset V_2 \subset V_3 \subset V_4 \subset \mathbb{C}^5 \qquad \longmapsto \qquad V_2$$

Example 2:

Are the fibers of $\pi: \overline{R(43125, 45321)} \longrightarrow \operatorname{Gr}_2(\mathbb{C}^5)$ equidimensional?

The Combinatorial Picture:

Combinatorially $\overline{R(43125, 45321)}$ is represented by the Bruhat Interval [43125, 45321].

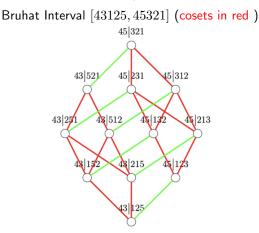


Example 2:

Are the fibers of $\pi: \overline{R(43125, 45321)} \longrightarrow \operatorname{Gr}_2(\mathbb{C}^5)$ equidimensional?

The Combinatorial Picture:

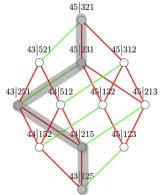
For projection we look at the cosets of W/W_2 in the interval.



Example 2:

Are the fibers of $\pi: \overline{R(43125, 45321)} \longrightarrow \operatorname{Gr}_2(\mathbb{C}^5)$ equidimensional?

The Combinatorial Picture:



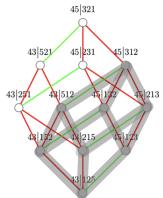
The least number of "coset steps" a saturated chain takes is 3.

The generic fibers of $\pi: \overline{R(43125, 45321)} \longrightarrow \mathbf{Gr}_2(\mathbb{C}^5)$ are 3-dimensional.

Example 2:

Are the fibers of $\pi: \overline{R(43125, 45321)} \longrightarrow \operatorname{Gr}_2(\mathbb{C}^5)$ equidimensional?

The Combinatorial Picture:



The saturated chains in subintervals take at most 3 coset steps.

Therefore each restriction's generic fiber has dimension less than the dimension of the generic fiber of $\pi: \overline{R(43125, 45321)} \longrightarrow \mathbf{Gr}_2(\mathbb{C}^5).$

The minimal weight of saturated chains in subintervals is bounded by that of the parent interval $\rightarrow \pi$ has equdimensional fibers!

Theorem (G.)

For each $x \in [b, a]$ define $w_P(x) = x_{\min}^{-1} x_{\max}$ where x_{\min} and x_{\max} are the unique minimum and maximum elements of $xW_P \cap [b, a]$. The following are equivalent.

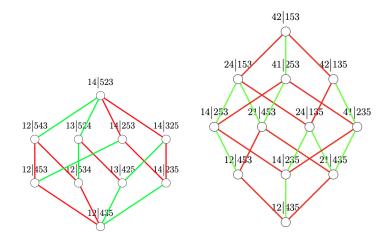
1. The projection map $\pi: \overline{R(b,a)} \longrightarrow G/P$ has equidimensional fibers.

Examples

- $2. \ F(v,u) \leq F(b,a) \text{ for each } [v,u] \subset [b,a].$
- 3. Define $[b, a]_{\min} = \{u_{\min} : u \in [b, a]\}$. The interval [b, a] has the set-theoretic factorization:

 $[b,a] = [b,a]_{\min} \times [e,w_P(a)]$

What Richardson vareity is being projected? Are the fibers equidimensional?



Proposition (G.)

Let $\pi : \overline{R(s_k, a)} \longrightarrow G/P$, where $G/P = Gr_r(\mathbb{C})$ and $s_k \in W_P = \langle S - \{s_r\} \rangle$. Let $w_P(x) = x_{\min}^{-1} x_{\max}$. Then π has equidimensional fibers if and only if: (1) $w_P(a) = w_P(s_k)$, (2) $l(w_P(a)) = F(s_k, a)$, and (3) (i) whenever $k \leq r$, then $s_k s_{k+1} \dots s_{r-1} s_r s_k \notin a^P$ (ii) whenever $k \geq r+1$, then $s_k s_{k-1} \dots s_{r+1} s_r s_k \notin a^P$

Example:

Let $G = SL_4(\mathbb{C})$. Are the fibers of $\pi : \overline{R(2134, 3421)} \longrightarrow \mathbf{Gr}_2(\mathbb{C}^5)$ equidimensional?

$$w_P(a) = a_{\min}^{-1} a_{\max} = (3412)(3421) = s_3$$

$$w_P(b) = b_{\min}^{-1} b_{\max} = (2134)(2143) = s_3$$

F(b,a) = 1

$$a^P = 34|12 = s_2 s_3 s_1 s_2$$
, and $s_k = 2134 = s_1 \rightarrow s_k \dots s_r = s_1 s_2$

Since $s_1s_2 \leq a^P = s_2s_3s_1s_2$, then π does not have equidimensional fibers.

References

- 1. Billey, S., Coskun, I. (2012). Singularities of generalized Richardson varieties. Communications in Algebra, 40(4), 1466–1495.
- 2. Buch-Chaput-Mihalcea-Perrin, Positivity of Minuscule Quantum K-Theory, arXiv:2205.08630
- 3. Deodhar, On Some Geometric Aspects of Bruhat Orderings. I. A Finer Decomposition of Bruhat Cells, Invent. Math. 79 (1985) 499-511.
- Knutson, A., Lam, T., Speyer, D. E. (2012). Projections of Richardson varieties. Journal Für Die Reine Und Angewandte Mathematik (Crelles Journal), 2014(687), 133–157.
- Richmond, E., Slofstra, W. (2017). Billey–Postnikov decompositions and the fibre bundle structure of Schubert varieties. Mathematische Annalen, 366(1–2), 31–55.

Thank You