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Introduction

Background and Notation:
G = SLn(C) (G a reductive algebraic group over C.)

T =



∗
∗ 0

. . .

0 ∗
∗

 , B =


∗ ∗ · · · ∗ ∗

∗ · · · ∗ ∗
. . .

...
...

0 ∗ ∗
∗


Define the Weyl group W = Norm(T )/T ∼= Sn = { Permutation matrices }.

Right action by B on G preserves the span of the iterative spans of column
vectors of matrices.

G/B = {V• := V1 ⊂ V2 ⊂ · · · ⊂ Vn−1 ⊂ Cn : dimVi = i}

G/B is called the flag variety, our ambient space.
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Introduction

Background and Notation:
Let si denote the permutation swapping the ith and (i+ 1)th columns of a matrix.

W = Sn = ⟨si⟩ ; generated by simple reflections

G/B =
⊔

w∈Sn

BwB/B ; the Bruhat decomposition
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Introduction

Background and Notation:

P =


∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

0 ∗ ∗
∗

 ; Parabolic Subgroup of G

Only some of the spans of columns are preserved.

Example: G = SL5(C) and P =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

0 ∗


=⇒ span of 1st two columns, and span of 1st four columns are preserved.

G/P = {V2 ⊂ V4 ⊂ C5 : dimV2 = 2,dimV4 = 4}

G/P is a partial flag variety.
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Introduction

Projection Map:

B =


∗ ∗ · · · ∗ ∗

∗ · · · ∗ ∗
. . .

...
...

0 ∗ ∗
∗

 ⊂ P =


∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

0 ∗ ∗
∗


There is a natural map, π : G/B −→ G/P via gB 7−→ gP . Intuitively we
forget some of the flag.

Example: G = SL5(C) and P =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

0 ∗


π : V1 ⊂ V2 ⊂ V3 ⊂ V4 ⊂ C5 7−→ V2 ⊂ V4 ⊂ C5
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Background: Permutations

Permutations:
The elements of W are words in the generating set {s1, s2, ..., sk}

Example: W = S3

w = 231 =

0 0 1
1 0 0
0 1 0

 =

0 1 0
1 0 0
0 0 1

 1 0 0
0 0 1
0 1 0

 = s1s2

The length of w is l(w) = 2.

W has a partial order given by v ≤ u if and only if BvB ⊂ BuB or equivalently, if
some reduced word of v is a subword of u.

Example:
u = s1s2s3s4 happens to be reduced. v = s2s4 is a subword of s1s2s3s4,
therefore v ≤ u.
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Background: Quotients

Quotients on Permutations:
Choose J ⊂ {s1, ..., sn−1}, and let WP = ⟨si|si ∈ J⟩. The quotient W/WP can
be described using the one-line notation of a permutation.

Example:
G = SL5(C), W = ⟨s1, s2, s3, s4⟩, WP = ⟨s1, s3⟩, w = 23415

Elements of W/WP are determined by placing bars at positions 2 and 4 in
one-line notation, because s1 and s2 were excluded from WP .

w = 23415 −→ 23|41|5

wWP = {23|14|5, 23|41|5, 32|14|5, 32|41|5} (full coset)

We can always choose a minimal length representative wP = 23|14|5.

Parabolic Decomposition: w = wP · wP = (23|14|5) · (12|43|5)
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Background: Varieties

Schubert Varieties:
Given u ∈ W , define the Schubert variety Xu = BuB =

⊔
w≤u BwB.

Let w0 be the unique maximal length element of W . The opposite Borel
B− = w0Bw0.

Given v ∈ W , define the opposite Schubert variety Xv = B−vB =
⊔

v≤w B−wB.

Richardson Varieties:
The Richardson variety R(v, u) = Xu ∩Xv = Xu ∩ w0Xw0v.

R(v, u) is nonempty if and only if v ≤ u, and if it is nonempty then

dim R(v, u) = l(u)− l(v).
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Background: Bruhat Poset

Graded Bruhat Poset: W = S4
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Background: Bruhat Poset

Graded Bruhat Poset: R(2134, 3421) ⊂ G/B
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History

Historical Context:
• In 2012 Knutson-Lam-Speyer classified projected Richardson varieties using

P -Bruhat order.
• Projected Richardson varieties are normal and Cohen-Macaulay, and have

rational resolutions

• π

(
R(v, u)

)
= π

(
R(y, x)

)
if and only if [v, u] [y, x] with respect to the

P -Bruhat order.

• In 2017 Richmond-Slofstra studied π : G/B −→ G/P in the context of
describing smooth and rationally smooth Schubert varieties.

• For any finite Lie Type, a Schubert variety is smooth if and only if it is an
iterated fibre bundle of Grassmannians.

• They showed π : Xu −→ G/P has equidimensional fibers if and only if
u = uPuP is a BP-decomposition.
(I generalize this result to Richardson varieties.)
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History

Historical Context:
• In 2012 Billey-Coskun studied the singularities of projected Richardson

varieties in Lie Type A. They showed that the singular locus of π(Ru
v )

denoted π(Ru
v )

sing, is the union of (Ru
v )

sing with the points gP ∈ π(Ru
v )

with positive dimensional fibers.

• In 2022 Buch-Chaput-Mihalcea-Perrin studied fibers of projected Richardson
varieties with an aim towards applications in quantum K-Theory. They
defined a relaxation of transverse intersections called semitransverse
intersections, and showed the generic fibers of projected Richardson varieties
are a semitransverse intersection of a pair of Schubert varieties.

Travis Grigsby (OSU) Equidimensional Fibers May 22, 2024 13 / 37



Recasting the Problem

Transition to Combinatorics:
The geometry of restricting

π : G/B −→ G/P

to a Richardson variety is captured by the graded Bruhat poset and W/WP .
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Recasting the Problem

Geometric Question:
Given π : R(b, a) −→ G/P , when are the fibers equidimensional?

Geometric Answer:

Theorem (G.)

Let π : R(b, a) −→ G/P be the projection map to a partial flag variety, and let k
equal the dimension of a generic fiber of π. The following are equivalent.

1. The fibers of π are equidimensional.

2. For each R(v, u) ⊂ R(b, a) the generic fiber of π
∣∣
R(v,u)

has dimension at

most k.
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Recasting the Problem

Geometric Question:
Given π : R(b, a) −→ G/P , when are the fibers equidimensional?

Combinatorial Answer:

Theorem (G.)

Let π : R(b, a) −→ G/P . Let w0 be the longest element of the Weyl group W
associated to G/B. For x ∈ W let xPxP denotes the parabolic decomposition of
x with respect to W/WP , and x ⋆ y denote the Demazure product of x with y.Let
F (b, a) equal the dimension of a generic fiber of π.

F (b, a) = l(aP ) + l(w0P bP )− l
(
ap ⋆ (w0P bP )

−1
)

F (v, u) calculates the generic fiber dimension of the restriction π
∣∣
R(v,u)

.
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Recasting the Problem

Geometric Question:
Given π : R(b, a) −→ G/P , when are the fibers equidimensional?

Combinatorial Answer:

Theorem (G.)

Let π : R(b, a) −→ G/P be the projection map to a partial flag variety, and let k
equal the dimension of a generic fiber of π. The following are equivalent.

1. The fibers of π are equidimensional.

2. F (v, u) ≤ F (b, a) for each [v, u] ⊂ [b, a].
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Recasting the Problem

Saturated Chains:

Color the graded Bruhat poset relative to W/WP .
Elements in the same coset share a red edge , the other edges are green.

Example: G = SL4(C), WP = ⟨s1, s3⟩, and π : R(2134, 3421) −→ G/P

Bruhat Interval [2134, 3421] (cosets in red)
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Recasting the Problem

Saturated Chains:

Consider saturated chains on the colored Bruhat poset. The weight of a
saturated chain is the number of red edges it contains.

A chain with weight 1.
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Recasting the Problem

Proposition (G.)

F (v, u) equals the minimum weight of a saturated chain in [v, u].

Proposition (G.)

Let C be a minimal weight chain in [v, u] ⊂ [b, a]. There exists a relative coset
xWP ∩ [b, a] with minimal weight chain D satisfying

weight C ≤ weight D
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Recasting the Problem

When does π : R(b, a) −→ G/P have equidimensional fibers?

Summary:

The generic fibers of π restricted to subvarieties each have smaller dimension
than the generic fiber of π.

F (v, u) ≤ F (b, a) for all [v, u] ⊂ [b, a]

Generic fibers of π
∣∣
R(v,u)

have dimension equal to the minimal weight chain

on [v, u].

The weight of a chain comes from
“coset steps”.

Focus on Cosets: Minimal weight chains in coset subintervals [v, u] should
take fewer “coset steps” than minimal weight chains in [b, a].
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Examples

Example 1:

G = SL4(C) W = S4 = ⟨s1, s2, s3⟩

G/B = {V1 ⊂ V2 ⊂ V3 ⊂ C4 : dimVk = k}

Parabolic Subgroup:
Let W2 = ⟨s1, s3⟩ then P2 = BW2B is a parabolic subgroup.

G/P2 = Gr2(C4) = {V ⊂ C4 : dimV = 2}

Projection Map:
The projection map π : G/B −→ Gr2(C4) is defined by

V1 ⊂ V2 ⊂ V3 ⊂ C4 7−→ V2
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Examples

Example 1:

Are the fibers of π : R(2134, 3421) −→ Gr2(C4) equidimensional?

The Combinatorial Picture:
Combinatorially R(2134, 3421) is represented by the Bruhat Interval [2134, 3421].

Travis Grigsby (OSU) Equidimensional Fibers May 22, 2024 23 / 37



Examples

Example 1:

Are the fibers of π : R(2134, 3421) −→ Gr2(C4) equidimensional?

The Combinatorial Picture:
For projection we look at the cosets of W/W2 in the interval.

Bruhat Interval [2134, 3421] (cosets in red)
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Examples

Example 1:

Are the fibers of π : R(2134, 3421) −→ Gr2(C4) equidimensional?

The Combinatorial Picture:

The least number of “coset steps” a
saturated chain takes is one.

The generic fibers of
π : R(2134, 3421) −→ Gr2(C4) are
1-dimensional.
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Examples

Example 1:

Are the fibers of π : R(2134, 3421) −→ Gr2(C4) equidimensional?

The Combinatorial Picture:

The saturated chains in the subinterval
[2314, 3241] must take two “coset”
steps.

The generic fibers of the restriction
π : R(2314, 3241) −→ Gr2(C4) are
2-dimensional.

The T -fixed point uB with u = 2314 is
generic for the restriction and Fiber(uP )
is P× P, which is 2-dimensional.

THE FIBERS ARE NOT EQUIDIMENSIONAL.
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Examples

Example 2:

G = SL5(C) W = S5 = ⟨s1, s2, s3, s4⟩

G/B = {V1 ⊂ V2 ⊂ V3 ⊂ V4 ⊂ C5 : dimVk = k}

Parabolic Subgroup:
Let W2 = ⟨s1, s3, s4⟩ then P2 = BW2B is a parabolic subgroup.

G/P2 = Gr2(C5) = {V ⊂ C5 : dimV = 2}

Projection Map:
The projection map π : G/B −→ Gr2(C5) is defined by

V1 ⊂ V2 ⊂ V3 ⊂ V4 ⊂ C5 7−→ V2
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Examples

Example 2:

Are the fibers of π : R(43125, 45321) −→ Gr2(C5) equidimensional?

The Combinatorial Picture:
Combinatorially R(43125, 45321) is represented by the Bruhat Interval
[43125, 45321].
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Examples

Example 2:

Are the fibers of π : R(43125, 45321) −→ Gr2(C5) equidimensional?

The Combinatorial Picture:
For projection we look at the cosets of W/W2 in the interval.

Bruhat Interval [43125, 45321] (cosets in red )
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Examples

Example 2:

Are the fibers of π : R(43125, 45321) −→ Gr2(C5) equidimensional?

The Combinatorial Picture:

The least number of “coset steps” a
saturated chain takes is 3.

The generic fibers of
π : R(43125, 45321) −→ Gr2(C5) are
3-dimensional.
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Examples

Example 2:

Are the fibers of π : R(43125, 45321) −→ Gr2(C5) equidimensional?

The Combinatorial Picture:

The saturated chains in subintervals take
at most 3 coset steps.

Therefore each restriction’s generic fiber
has dimension less than the dimension of
the generic fiber of
π : R(43125, 45321) −→ Gr2(C5).

The minimal weight of saturated chains in subintervals is bounded by that of the
parent interval −→ π has equdimensional fibers!
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Examples

Theorem (G.)

For each x ∈ [b, a] define wP (x) = x−1
minxmax where xmin and xmax are the unique

minimum and maximum elements of xWP ∩ [b, a]. The following are equivalent.

1. The projection map π : R(b, a) −→ G/P has equidimensional fibers.

2. F (v, u) ≤ F (b, a) for each [v, u] ⊂ [b, a].

3. Define [b, a]min = {umin : u ∈ [b, a]}. The interval [b, a] has the set-theoretic
factorization:

[b, a] = [b, a]min × [e, wP (a)]
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Examples

What Richardson vareity is being projected? Are the fibers
equidimensional?
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Examples

Proposition (G.)

Let π : R(sk, a) −→ G/P , where G/P = Grr(C) and sk ∈ WP =
〈
S − {sr}

〉
.

Let wP (x) = x−1
minxmax. Then π has equidimensional fibers if and only if:

(1) wP (a) = wP (sk),

(2) l(wP (a)) = F (sk, a), and

(3) (i) whenever k ≤ r, then sksk+1...sr−1srsk ≰ aP

(ii) whenever k ≥ r + 1, then sksk−1...sr+1srsk ≰ aP
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Examples

Example:
Let G = SL4(C). Are the fibers of π : R(2134, 3421) −→ Gr2(C5)
equidimensional?

wP (a) = a−1
minamax = (3412)(3421) = s3

wP (b) = b−1
minbmax = (2134)(2143) = s3

F (b, a) = 1

aP = 34|12 = s2s3s1s2, and sk = 2134 = s1 → sk...sr = s1s2

Since s1s2 ≤ aP = s2s3s1s2, then π does not have equidimensional fibers.
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Examples
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Examples

Thank You
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