The low point in the theta cycle of modular forms modulo p^2

Michael Hanson Joint w. Martin Raum & Olav Richter

University of North Texas

May 22, 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Contents

Set up

Motivation

Strategy to tackle m = 2

Some Results

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Throughout, $p \ge 5$ is a prime, and $M_k := M_k(\mathbb{Z}_{(p)})$

Modular forms modulo p^m

$$M_k(\mathbb{Z}/p^m\mathbb{Z}) := M_k(\mathbb{Z}) \otimes \mathbb{Z}/p^m\mathbb{Z}$$

if $f \in M_k$, write $\overline{f} \in M_k(\mathbb{Z}/p^m\mathbb{Z})$, and if $f, g \in M_k$ with $\overline{f} = \overline{g}$ in $M_k(\mathbb{Z}/p^m\mathbb{Z})$, write $f \equiv g \pmod{p^m}$.

Basic Definitions

Definition For $f \in M_k$, the mod p^m filtration of f is

$$w_{p^m}(f) := \inf\{k' : \overline{f} = \overline{g} \text{ for } g \in M_{k'}\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Example

Basic Definitions

Ramanujan theta operator $\theta := q \frac{d}{dq}$ on *q*-series:

$$\theta\left(\sum a(n)q^n\right)=\sum na(n)q^n.$$

Fact: If $f \in M_k$ then $\overline{\theta f} \in M_{k'}(\mathbb{Z}/p^m\mathbb{Z})$ (here, $k' = w_{p^m}(f) + 2 + 2\varphi(p^m)$).

Definition

The **theta cycle mod** p^m of $f \in M_k$ is

$$\Omega_{p^m}(f) := \left(w_{p^m}(\theta^m f), w_{p^m}(\theta^{m+1}f), \dots, w_{p^m}(\theta^{\varphi(p^m)+m-1}f)\right)$$

For technical reasons...

$$\tilde{\Omega}_{p^m}(f) := \left(w_{p^m}(f), w_{p^m}(\theta f), \dots, w_{p^m}(\theta^{\varphi(p^m)+m-1}f)\right)$$

Basic Definitions

Describing $\Omega_{p^m}(f)$ can give important information about f. In particular, we want to know...

- 1. How does $\Omega_{p^m}(f)$ increase?
- 2. Where are its high and low points?

Example

Motivation

m=1 $\Omega_p(f)$ is well-understood.

- Tate, Jochnowitz: Position/filtration of high/low points known (combinatorial argument).
 - Always one or two low points
 - If k < p, position of 1st low point determines whether f is ordinary at p or not, i.e. has Up-congruence or not:

$$a(np) \equiv 0 \pmod{p} \quad \forall n$$

- Ahlgren-Boylan: Classification of Ramanujan congruences for p(n).
 - ...and work extending these results for more general classes of forms (J. Sinick, H-Smith).

Motivation

$$m \geq 2$$
 Very little known about $\Omega_{p^m}(f)!$

• Chen-Kiming: If $w_p(f) = k \not\equiv 0 \pmod{p}$ then

$$w_{p^2}(\theta f) = k + 2 + 2p(p-1).$$

▶ Kim-Lee: For $n_t = tp$ or $n_t = tp - k + 1$, under some assumptions,

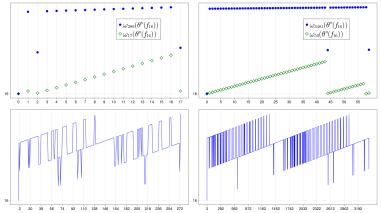
$$w_{p^m}(\theta^{n_t}f) \leq k+2n_t+p^{m-1}(p-1).$$

Also some exact results when m = 2 at each n_t .

Knowing more about Ω_p^m(f) could potentially provide information about f (mod p^m), e.g. if f has U_p-congruence mod p^m.

Strategy to compute $\Omega_{p^2}(f)$

We can't use counting arguments here... $\Omega_{p^2}(f)$ is very erratic in general.



▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Strategy to tackle m = 2

Direct approach: Let $f \in M_k$.

1.
$$\theta(f) = \frac{k}{12}E_2f + g_{k+2}$$
 for some $g_{k+2} \in M_{k+2}$

2. Iterate θ in this way:

$$\theta^n(f) = \alpha_{n,k} E_2^n f + G$$

for some form G.

3. Find "minimal" expression for $E_2 \pmod{p^2}$ and do more stuff to read $w_{p^2}(\theta^n f)$ from resulting expression.

E_2 congruence

Theorem (H, Raum, Richter) For $p \ge 5$ prime,

$$E_2 \equiv E_{p-1}^{p-2} \left(E_{p-1}^{p+1} f_{p+1} + p E_{p+1}^p
ight) \pmod{p^2}$$

for some $f_{p+1} \in M_{p+1}$.

E_2 congruence

Theorem (H, Raum, Richter) For $p \ge 5$ prime,

$$E_2 \equiv E_{p-1}^{p-2} \left(E_{p-1}^{p+1} f_{p+1} + p E_{p+1}^p \right) \pmod{p^2}$$

for some $f_{p+1} \in M_{p+1}$.

Using this with $\theta^n(f) = \alpha_{n,k} E_2^n f + G$ isn't quite enough because we can't control G. However, $\Omega_p(f)$ gives some information about $\Omega_{p^2}(f)$ (divisibility by E_{p-1}).

Initial elements of $\Omega_{p^2}(f)$

Theorem (HRR)

Before the 1st low point j of $\tilde{\Omega}_p(f)$, $\tilde{\Omega}_{p^2}(f)$ increases by 2 each step, except for the first step which increases by 2 + 2p(p-1) (Chen-Kiming). Thus,

$$w_{p^2}(\theta^i f) = k + 2i + 2p(p-1), \quad 1 \le i < j.$$

Initial elements of $\Omega_{p^2}(f)$

In conjunction with Kim-Lee...

Corollary

The position of the 1st low point of $\tilde{\Omega}_p(f)$ and of $\tilde{\Omega}_{p^2}(f)$ coincide. At this low point, we have the bounds:

•
$$k \not\equiv 1,2 \pmod{p}, \ k \equiv k_0 \pmod{p}$$
:

$$w_{p^2}(\theta^{p+1-k_0}f) \le k+2-2k_0+p(p+1)$$

• $k \equiv 1 \pmod{p}$:

$$w_{p^2}(\theta^p f) \leq k + p(p+1)$$

• $k \equiv 2 \pmod{p}$:

$$w_{p^2}(\theta^{p-1}f) \leq k-2+p(p+1).$$

Initial elements of $\Omega_{p^2}(f)$

Corollary

If $k \leq p + 1$ and f is ordinary at p, then low points have exact filtrations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

►
$$k < p$$
:
 $w_{p^2}(\theta^{p-k+1}f) = 2 - k + p(p+1)$
► $k = p + 1$:
 $w_{p^2}(\theta^p f) = (p+1)^2$

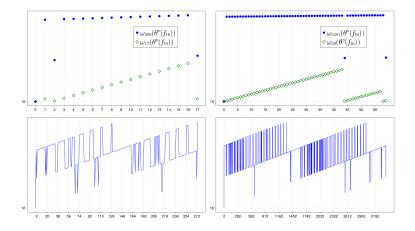
Theta cycle of $E_{p-1} \mod p^2$

In contrast with the trivial $\Omega_p(E_{p-1})$, $\Omega_{p^2}(E_{p-1})$ is very regular. Theorem (HRR)

There are exactly p low points in $\Omega_{p^2}(E_{p-1})$ with rises by p+1 in between. These low points occur at $\theta^{i(p-1)+2}(E_{p-1})$ for $0 \le i < p$, and the filtrations are

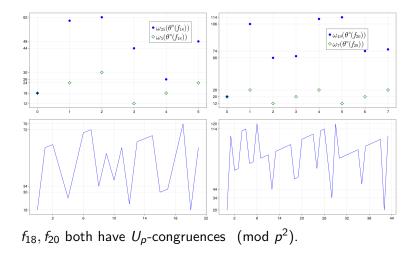
$$w_{p^2}(\theta^{i(p-1)+2}E_{p-1})=2p+2.$$

Some graphs



No U_{17} -congruence mod 17, Has U_{59} -congruence mod 59, No U_{17} -congruence mod 17^2 No U_{59} -congruence mod 59^2

Some graphs



▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三重 - 釣A(?)

Thank you!!!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで